Revisiting semiconductor bulk hamiltonians using quantum computers

被引:1
|
作者
Pimenta, Raphael Cesar de Souza [1 ]
Bezerra, Anibal Thiago [2 ]
机构
[1] Univ Fed Santa Catarina, Dept Fis, Roberto Sampaio Gonzaga s-n, Florianopolis, SC, Brazil
[2] Univ Fed Alfenas, Dept Fis, Jovino Fernandes Sales 2600, Alfenas, MG, Brazil
关键词
semiconductors; quantum computers; NISQ; k; p Method; SYSTEMS;
D O I
10.1088/1402-4896/acbdc8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With the advent of near-term quantum computers, it is now possible to simulate solid-state properties using quantum algorithms. By an adequate description of the system's Hamiltonian, variational methods enable to fetch of the band structure and other fundamental properties as transition probabilities. Here, we describe semiconductor structures of the III-V family using k center dot p Hamiltonians and obtain their band structures using a state vector solver, a probabilistic simulator, and a real noisy-device simulator. The resulting band structures are in good agreement with those obtained by direct diagonalization of the Hamiltonian. The simulation times depend on the optimizer, circuit depth, and simulator used. Finally, with the optimized eigenstates, we convey the inter-band absorption probability, demonstrating the possibility of analyzing the fundamental properties of crystalline systems using quantum computers.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Some foundational aspects of quantum computers and quantum robots
    Benioff, P
    SUPERLATTICES AND MICROSTRUCTURES, 1998, 23 (3-4) : 407 - 417
  • [22] Quantum Monte Carlo Calculations in Solids with Downfolded Hamiltonians
    Ma, Fengjie
    Purwanto, Wirawan
    Zhang, Shiwei
    Krakauer, Henry
    PHYSICAL REVIEW LETTERS, 2015, 114 (22)
  • [23] Analytically Solvable Quantum Hamiltonians and Relations to Orthogonal Polynomials
    Regniers, G.
    Van der Jeugt, J.
    LIE THEORY AND ITS APPLICATIONS IN PHYSICS, 2010, 1243 : 99 - 114
  • [24] Quantum chemistry simulation on quantum computers: theories and experiments
    Lu, Dawei
    Xu, Boruo
    Xu, Nanyang
    Li, Zhaokai
    Chen, Hongwei
    Peng, Xinhua
    Xu, Ruixue
    Du, Jiangfeng
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (26) : 9411 - 9420
  • [25] Linear Quantum Entropy and Non-Hermitian Hamiltonians
    Sergi, Alessandro
    Giaquinta, Paolo V.
    ENTROPY, 2016, 18 (12):
  • [26] Using Shor's algorithm on near term Quantum computers: a reduced version
    Rossi, Martina
    Asproni, Luca
    Caputo, Davide
    Rossi, Stefano
    Cusinato, Alice
    Marini, Remo
    Agosti, Andrea
    Magagnini, Marco
    QUANTUM MACHINE INTELLIGENCE, 2022, 4 (02)
  • [27] Using Shor’s algorithm on near term Quantum computers: a reduced version
    Martina Rossi
    Luca Asproni
    Davide Caputo
    Stefano Rossi
    Alice Cusinato
    Remo Marini
    Andrea Agosti
    Marco Magagnini
    Quantum Machine Intelligence, 2022, 4
  • [28] The Future of Cybersecurity in the Age of Quantum Computers
    Raheman, Fazal
    FUTURE INTERNET, 2022, 14 (11):
  • [29] NISQ Computers: A Path to Quantum Supremacy
    AbuGhanem, Muhammad
    Eleuch, Hichem
    IEEE ACCESS, 2024, 12 : 102941 - 102961
  • [30] Entanglement points to scalable quantum computers
    Cartlidge, Edwin
    PHYSICS WORLD, 2020, 33 (01) : 7 - 7