GENECI: A novel evolutionary machine learning consensus-based approach for the inference of gene regulatory networks

被引:4
|
作者
Segura-Ortiz, Adrian [1 ]
Garcia-Nieto, Jose [1 ,2 ]
Aldana-Montes, Jose F. [1 ,2 ]
Navas-Delgado, Ismael [1 ,2 ]
机构
[1] Univ Malaga, Dept Lenguajes & Ciencias Comp, ITIS Software, Malaga 29071, Spain
[2] Univ Malaga, Biomed Res Inst Malaga IBIMA, Malaga, Spain
关键词
Gene regulatory networks; Differential expression; Machine learning; Evolutionary algorithms; SUSCEPTIBILITY LOCI; EXPRESSION; ASSOCIATION;
D O I
10.1016/j.compbiomed.2023.106653
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene regulatory networks define the interactions between DNA products and other substances in cells. Increasing knowledge of these networks improves the level of detail with which the processes that trigger different diseases are described and fosters the development of new therapeutic targets. These networks are usually represented by graphs, and the primary sources for their correct construction are usually time series from differential expression data. The inference of networks from this data type has been approached differently in the literature. Mostly, computational learning techniques have been implemented, which have finally shown some specialization in specific datasets. For this reason, the need arises to create new and more robust strategies for reaching a consensus based on previous results to gain a particular capacity for generalization. This paper presents GENECI (GEne NEtwork Consensus Inference), an evolutionary machine learning approach that acts as an organizer for constructing ensembles to process the results of the main inference techniques reported in the literature and to optimize the consensus network derived from them, according to their confidence levels and topological characteristics. After its design, the proposal was confronted with datasets collected from academic benchmarks (DREAM challenges and IRMA network) to quantify its accuracy. Subsequently, it was applied to a real-world biological network of melanoma patients whose results could be contrasted with medical research collected in the literature. Finally, it has been proved that its ability to optimize the consensus of several networks leads to outstanding robustness and accuracy, gaining a certain generalization capacity after facing the inference of multiple datasets. The source code is hosted in a public repository at GitHub under MIT license: https://github.com/AdrianSeguraOrtiz/GENECI. Moreover, to facilitate its installation and use, the software associated with this implementation has been encapsulated in a python package available at PyPI: https://pypi.org/project/geneci/.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A consensus-based approach to improve the accuracy of machine learning models
    Karamdel, Hasti
    Ashtiani, Mehrdad
    Mehditabar, Mohammad Javad
    Bakhshi, Fatemeh
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (5-6) : 4257 - 4278
  • [2] Inference of gene regulatory networks based on the Light Gradient Boosting Machine
    Du, Zhihua
    Zhong, Xing
    Wang, Fangzhong
    Uversky, Vladimir N.
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2022, 101
  • [3] A Novel model for inference of gene regulatory networks
    Ristevski, Blagoj
    Loskovska, Suzana
    HEALTHMED, 2011, 5 (06): : 2024 - 2033
  • [4] A Machine Learning Approach to Simulate Gene Expression and Infer Gene Regulatory Networks
    Zito, Francesco
    Cutello, Vincenzo
    Pavone, Mario
    ENTROPY, 2023, 25 (08)
  • [5] Finding Gene Regulatory Networks in Psoriasis: Application of a Tree-Based Machine Learning Approach
    Deng, Jingwen
    Schieler, Carlotta
    Borghans, Jose A. M.
    Lu, Chuanjian
    Pandit, Aridaman
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [6] Classification-Based Inference of Dynamical Models of Gene Regulatory Networks
    Fehr, David A.
    Handzlik, Joanna E.
    Manu
    Loh, Yen Lee
    G3-GENES GENOMES GENETICS, 2019, 9 (12): : 4183 - 4195
  • [7] Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method
    Yu, Bin
    Xu, Jia-Meng
    Li, Shan
    Chen, Cheng
    Chen, Rui-Xin
    Wang, Lei
    Zhang, Yan
    Wang, Ming-Hui
    ONCOTARGET, 2017, 8 (46) : 80373 - 80392
  • [8] COFFEE: consensus single cell-type specific inference for gene regulatory networks
    Lodi, Musaddiq
    Chernikov, Anna
    Ghosh, Preetam
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [9] Integrative approach for inference of gene regulatory networks using lasso-based random featuring and application to psychiatric disorders
    Kim, Dongchul
    Kang, Mingon
    Biswas, Ashis
    Liu, Chunyu
    Gao, Jean
    BMC MEDICAL GENOMICS, 2016, 9
  • [10] Learning gene regulatory networks from gene expression data using weighted consensus
    Fujii, Chisato
    Kuwahara, Hiroyuki
    Yu, Ge
    Guo, Lili
    Gao, Xin
    NEUROCOMPUTING, 2017, 220 : 23 - 33