The Turan number for the edge blow-up of trees: The missing case

被引:4
作者
Chi, Cheng [1 ]
Yuan, Long-Tu [1 ,2 ,3 ]
机构
[1] East China Normal Univ, Sch Math Sci, 500 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] East China Normal Univ, Sch Math Sci, 500 Dongchuan Rd, Shanghai 200240, Peoples R China
[3] East China Normal Univ, Shanghai Key Lab PMMP, 500 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Trees; Edge blow-up; Extremal graphs; EXTREMAL GRAPHS;
D O I
10.1016/j.disc.2023.113370
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The edge blow-up of a graph is the graph obtained from replacing each edge of it by a clique of the same size where the new vertices of the cliques are all different. Wang, Hou, Liu and Ma determined the Turan number of the edge blow-up of trees except one particular case. Answering a problem posed by them, we determined the Turan number of this particular case.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 16 条
[1]  
[Anonymous], 2008, GRAPH THEORY
[2]   Extremal graphs for intersecting cliques [J].
Chen, GT ;
Gould, RJ ;
Pfender, F ;
Wei, B .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 89 (02) :159-171
[3]  
Chi C, EXTREMAL GRAPH UNPUB
[4]   DEGREES AND MATCHINGS [J].
CHVATAL, V ;
HANSON, D .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 20 (02) :128-138
[5]   EXTREMAL GRAPHS FOR INTERSECTING TRIANGLES [J].
ERDOS, P ;
FUREDI, Z ;
GOULD, RJ ;
GUNDERSON, DS .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 64 (01) :89-100
[6]   ON THE STRUCTURE OF LINEAR GRAPHS [J].
ERDOS, P ;
STONE, AH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (12) :1087-1091
[7]  
Erdos P., 1966, Studia Sci. Math. Hung., V1, P51
[8]  
Liu H, 2013, ELECTRON J COMB, V20
[9]  
Mantel M., 1907, WISKUNDIGE OPGAVEN, V10, P60
[10]   Extremal Graphs for Blow-Ups of Keyrings [J].
Ni, Zhenyu ;
Kang, Liying ;
Shan, Erfang ;
Zhu, Hui .
GRAPHS AND COMBINATORICS, 2020, 36 (06) :1827-1853