Circulating miRNA Expression Profiles and Machine Learning Models in Association with Response to Irinotecan-Based Treatment in Metastatic Colorectal Cancer

被引:9
作者
Pliakou, Evangelia [1 ]
Lampropoulou, Dimitra Ioanna [2 ]
Dovrolis, Nikolas [3 ]
Chrysikos, Dimosthenis [4 ]
Filippou, Dimitrios [5 ]
Papadimitriou, Christos [6 ]
Vezakis, Antonios [7 ]
Aravantinos, Gerasimos [1 ]
Gazouli, Maria [8 ]
机构
[1] Gen Oncol Hosp Kifissia Agioi Anargiroi, Dept Med Oncol 2, Nea Kifissia, Athens 14564, Greece
[2] ECONCARE, Athens 11528, Greece
[3] Democritus Univ Thrace, Dept Med, Lab Biol, Alexandroupolis 68100, Greece
[4] Natl & Kapodistrian Univ Athens, Hippoctat Hosp, Med Sch, Dept Propaedeut Surg 1, Athens 11528, Greece
[5] Natl & Kapodistrian Univ Athens, Med Sch, Dept Anat, Athens 11527, Greece
[6] Natl & Kapodistrian Univ Athens, Aretaie Hosp, Med Sch, Dept Surg 2, Athens 11528, Greece
[7] Natl & Kapodistrian Univ Athens, Aretaie Univ Hosp, Med Sch, Dept Surg, Athens 11528, Greece
[8] Natl & Kapodistrian Univ Athens, Med Sch, Dept Basic Med Sci, Lab Biol, Athens 11527, Greece
关键词
microRNAs; colorectal cancer; machine learning; artificial intelligence; irinotecan; resistance; DOWN-REGULATION; GASTRIC-CANCER; CELLS; ANGIOGENESIS; BEVACIZUMAB; MANAGEMENT; ONCOLOGY; SURVIVAL; GROWTH;
D O I
10.3390/ijms24010046
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Colorectal cancer represents a leading cause of cancer-related morbidity and mortality. Despite improvements, chemotherapy remains the backbone of colorectal cancer treatment. The aim of this study is to investigate the variation of circulating microRNA expression profiles and the response to irinotecan-based treatment in metastatic colorectal cancer and to identify relevant target genes and molecular functions. Serum samples from 95 metastatic colorectal cancer patients were analyzed. The microRNA expression was tested with a NucleoSpin miRNA kit (Machnery-Nagel, Germany), and a machine learning approach was subsequently applied for microRNA profiling. The top 10 upregulated microRNAs in the non-responders group were hsa-miR-181b-5p, hsa-miR-10b-5p, hsa-let-7f-5p, hsa-miR-181a-5p, hsa-miR-181d-5p, hsa-miR-301a-3p, hsa-miR-92a-3p, hsa-miR-155-5p, hsa-miR-30c-5p, and hsa-let-7i-5p. Similarly, the top 10 downregulated microRNAs were hsa-let-7d-5p, hsa-let-7c-5p, hsa-miR-215-5p, hsa-miR-143-3p, hsa-let-7a-5p, hsa-miR-10a-5p, hsa-miR-142-5p, hsa-miR-148a-3p, hsa-miR-122-5p, and hsa-miR-17-5p. The upregulation of microRNAs in the miR-181 family and the downregulation of those in the let-7 family appear to be mostly involved with non-responsiveness to irinotecan-based treatment.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Irinotecan-based chemotherapy in a metastatic colorectal cancer patient under haemodialysis for chronic renal dysfunction:: two cases considered
    Venat-Bouvet, Laurence
    Saint-Marcoux, Franck
    Lagarde, Christian
    Peyronnet, Pierre
    Lebrun-Ly, Valerie
    Tubiana-Mathieu, Nicole
    ANTI-CANCER DRUGS, 2007, 18 (08) : 977 - 980
  • [42] Patterns of Gene Expression Profiles Associated with Colorectal Cancer in Colorectal Mucosa by Using Machine Learning Methods
    Ren, Jing Xin
    Chen, Lei
    Guo, Wei
    Feng, Kai Yan
    Cai, Yu-Dong
    Huang, Tao
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2024, 27 (19) : 2921 - 2934
  • [43] Association of MLH1 single nucleotide polymorphisms with clinical outcomes of first-line irinotecan-based chemotherapy in colorectal cancer
    Wang, Deqiang
    Zhang, Xiaomei
    Zhang, Yan
    Wu, Yuan
    Guan, Xin
    Zhu, Wei
    Wang, Mei
    Qi, Chuang
    Shen, Bo
    ONCOTARGETS AND THERAPY, 2018, 11 : 8083 - 8087
  • [44] CHFR-Promoter-Methylation Status Is Predictive of Response to Irinotecan-based Systemic Chemotherapy in Advanced Colorectal Cancer
    Hagiwara, Toshiaki
    Sugimoto, Kiichi
    Momose, Hirotaka
    Irie, Takahiro
    Honjo, Kumpei
    Okazawa, Y. U.
    Kawai, Masaya
    Kawano, Shingo
    Munakata, Shinya
    Takahashi, Makoto
    Kojima, Yutaka
    Serizawa, Nobuko
    Nagahara, Akihito
    Hoffman, Robert M.
    Brock, Malcolm, V
    Sakamoto, Kazuhiro
    ANTICANCER RESEARCH, 2022, 42 (02) : 697 - 707
  • [45] Machine-learning-based Analysis Identifies miRNA Expression Profile for Diagnosis and Prediction of Colorectal Cancer: A Preliminary Study
    Pawelka, Dorota
    Laczmanska, Izabela
    Karpinski, Pawel
    Supplitt, Stanislaw
    Witkiewicz, Wojciech
    Knychalski, Barlomiej
    Pelak, Joanna
    Zebrowska, Paulina
    Laczmanski, Lukasz
    CANCER GENOMICS & PROTEOMICS, 2022, 19 (04) : 503 - 511
  • [46] Predictive models based on machine learning for bone metastasis in patients with diagnosed colorectal cancer
    Li, Tianhao
    Huang, Honghong
    Zhang, Shuocun
    Zhang, Yongdan
    Jing, Haoren
    Sun, Tianwei
    Zhang, Xipeng
    Lu, Liangfu
    Zhang, Mingqing
    FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [47] Changes in circulating microRNA-126 during treatment with chemotherapy and bevacizumab predicts treatment response in patients with metastatic colorectal cancer
    Hansen, T. F.
    Carlsen, A. L.
    Heegaard, N. H. H.
    Sorensen, F. B.
    Jakobsen, A.
    BRITISH JOURNAL OF CANCER, 2015, 112 (04) : 624 - 629
  • [48] Validation study of a prognostic classification in patients with metastatic colorectal cancer who received irinotecan-based second-line chemotherapy
    Kohei Shitara
    Satoshi Yuki
    Kentaro Yamazaki
    Yoichi Naito
    Hiraku Fukushima
    Yoshito Komatsu
    Hirofumi Yasui
    Toshimi Takano
    Kei Muro
    Journal of Cancer Research and Clinical Oncology, 2013, 139 : 595 - 603
  • [49] ABC-Transporter Expression Does Not Correlate with Response to Irinotecan in Patients with Metastatic Colorectal Cancer
    Trumpi, K.
    Emmink, B. L.
    Prins, A. M.
    van Oijen, M. G. H.
    van Diest, P. J.
    Punt, C. J. A.
    Koopman, M.
    Kranenburg, O.
    Rinkes, I. H. M. Borel
    JOURNAL OF CANCER, 2015, 6 (11): : 1079 - 1086
  • [50] Early tumor shrinkage in metastatic colorectal cancer: Retrospective analysis from an irinotecan-based randomized first-line trial
    Giessen, Clemens
    Laubender, Ruediger P.
    von Weikersthal, Ludwig Fischer
    Schalhorn, Andreas
    Modest, Dominik P.
    Stintzing, Sebastian
    Haas, Michael
    Mansmann, Ulrich R.
    Heinemann, Volker
    CANCER SCIENCE, 2013, 104 (06) : 718 - 724