Prediction of ecological status of surface water bodies with supervised machine learning classifiers

被引:14
作者
Arrighi, Chiara [1 ]
Castelli, Fabio [1 ]
机构
[1] Univ Firenze, Dept Civil & Environm Engn, via S Marta 3, I-50139 Florence, Italy
关键词
Water resources management; River catchment; Hydrology; Ecological status;
D O I
10.1016/j.scitotenv.2022.159655
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ensuring a good ecological status of water bodies is one of the key challenges of communities and one of the objectives of the European Water Framework Directive. Although recent works identified the most significant stressors affecting the ecological quality of rivers, the ability to predict the overall ecological status of rivers based on a limited amount of easily accessible geospatial data has not been investigated so far. Most of the analyses focus on detailed local modelling and measurements which cannot be systematically applied at regional scales for the purposes of water resources management. The aim of this work is to understand the capabilities of five supervised machine learning classifiers of predicting the ecological status of rivers based on land use, climate, morphology, and water management parameters extracted over the river catchments corresponding to the ecological monitoring stations. Moreover, the performances of machine learning classifiers are compared to the results of the canonical correlation analysis. The method is applied to 360 catchments in Tuscany (central Italy) with a median size of 33.6 km2 and a Mediterranean climate. The results show (i) a significant correlation of ecological status with summer climate (i.e., maximum temperatures and minimum precipitation), land use and water exploitation, (ii) an 80 % precision of Random Forest algorithm to predict ecological status and (iii) higher capability of all classifiers to predict at least good ecological status. In perspective, such predictive capabilities can support decision making in the land and water resources management and highlight strategies for river eco-hydrological conservation.
引用
收藏
页数:9
相关论文
共 36 条
[1]   INSTANCE-BASED LEARNING ALGORITHMS [J].
AHA, DW ;
KIBLER, D ;
ALBERT, MK .
MACHINE LEARNING, 1991, 6 (01) :37-66
[2]  
[Anonymous], 2020, Biodegradable and compostable plastics-challenges and opportunities Key messages What are the challenges ?, P1
[3]  
ARPAT, 2021, MON AMB CORP IDR SUP
[4]   WFD Ecological Quality Indicators Are Poorly Correlated with Water Levels in River Catchments in Tuscany (Italy) [J].
Arrighi, Chiara ;
Bonamini, Isabella ;
Simoncini, Cristina ;
Bartalesi, Stefano ;
Castelli, Fabio .
HYDROLOGY, 2021, 8 (04)
[5]   Searching for a compromise between ecological quality targets, and social and ecosystem costs for heavily modified water bodies (HMWBs): the Lambro-Seveso-Olona system case study [J].
Azzellino, A. ;
Antonelli, M. ;
Canobbio, S. ;
Cevirgen, S. ;
Mezzanotte, V. ;
Piana, A. ;
Salvetti, R. .
WATER SCIENCE AND TECHNOLOGY, 2013, 68 (03) :681-688
[6]  
Baudin Jean-Christophe, 2020, CLOSESTPOINT 4 0 1 C
[7]   More than one million barriers fragment Europe's rivers [J].
Belletti, Barbara ;
de Leaniz, Carlos Garcia ;
Jones, Joshua ;
Bizzi, Simone ;
Boerger, Luca ;
Segura, Gilles ;
Castelletti, Andrea ;
van de Bund, Wouter ;
Aarestrup, Kim ;
Barry, James ;
Belka, Kamila ;
Berkhuysen, Arjan ;
Birnie-Gauvin, Kim ;
Bussettini, Martina ;
Carolli, Mauro ;
Consuegra, Sofia ;
Dopico, Eduardo ;
Feierfeil, Tim ;
Fernandez, Sara ;
Garrido, Pao Fernandez ;
Garcia-Vazquez, Eva ;
Garrido, Sara ;
Giannico, Guillermo ;
Gough, Peter ;
Jepsen, Niels ;
Jones, Peter E. ;
Kemp, Paul ;
Kerr, Jim ;
King, James ;
Lapinska, Malgorzata ;
Lazaro, Gloria ;
Lucas, Martyn C. ;
Marcello, Lucio ;
Martin, Patrick ;
McGinnity, Phillip ;
O'Hanley, Jesse ;
Olivo del Amo, Rosa ;
Parasiewicz, Piotr ;
Pusch, Martin ;
Rincon, Gonzalo ;
Rodriguez, Cesar ;
Royte, Joshua ;
Schneider, Claus Till ;
Tummers, Jeroen S. ;
Vallesi, Sergio ;
Vowles, Andrew ;
Verspoor, Eric ;
Wanningen, Herman ;
Wantzen, Karl M. ;
Wildman, Laura .
NATURE, 2020, 588 (7838) :436-+
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   Macrophytes as biological indicators of organic pollution in the Lepenci River Basin in Kosovo [J].
Bytyqi, Pajtim ;
Czikkely, Marton ;
Shala-Abazi, Albona ;
Fetoshi, Osman ;
Ismaili, Murtezan ;
Hyseni-Spahiu, Mimoza ;
Ymeri, Prespa ;
Kabashi-Kastrati, Edona ;
Millaku, Fadil .
JOURNAL OF FRESHWATER ECOLOGY, 2020, 35 (01) :105-121
[10]   Protecting and restoring Europe's waters: An analysis of the future development needs of the Water Framework Directive [J].
Carvalho, Laurence ;
Mackay, Eleanor B. ;
Cardoso, Ana Cristina ;
Baattrup-Pedersen, Annette ;
Birk, Sebastian ;
Blackstockf, Kirsty L. ;
Borics, Gabor ;
Borja, Angel ;
Feld, Christian K. ;
Ferreira, Maria Teresa ;
Globevnik, Lidija ;
Grizzetti, Bruna ;
Hendry, Sarah ;
Hering, Daniel ;
Kelly, Martyn ;
Langaas, Sindre ;
Meissner, Kristian ;
Panagopoulos, Yiannis ;
Penning, Ellis ;
Rouillard, Josselin ;
Sabater, Sergi ;
Schmedtje, Ursula ;
Spears, Bryan M. ;
Venohr, Markus ;
van de Bund, Wouter ;
Solheim, Anne Lyche .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 658 :1228-1238