Arithmetic equivalence for non-geometric extensions of global function fields

被引:0
|
作者
Battistoni, Francesco [1 ]
Oukhaba, Hassan [1 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Math Besancon, CNRS UMR 6623, 16,Route Gray, F-25030 Besancon, France
关键词
Arithmetic equivalence; Global function fields; Inverse Galois problem; NUMBER-FIELDS;
D O I
10.1016/j.jnt.2022.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study couples of finite separable extensions of the function field Fq(T) which are arithmetically equivalent, i.e. such that prime ideals of Fq[T] decompose with the same inertia degrees in the two fields, up to finitely many exceptions. In the first part of this work, we extend previous results by Cornelissen, Kontogeorgis and Van der Zalm to the case of non-geometric extensions of Fq(T), which are fields such that their field of constants may be bigger than Fq. In the second part, we explicitly produce examples of non-geometric extensions of F2(T) which are equivalent and non-isomorphic over F2(T) and non-equivalent over F4(T), solving a particular Inverse Galois Problem.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:385 / 411
页数:27
相关论文
共 26 条
  • [1] GENUS FIELDS OF ABELIAN EXTENSIONS OF RATIONAL CONGRUENCE FUNCTION FIELDS, II
    Fernando Barreto-Castaneda, Jonny
    Montelongo-Vazquez, Carlos
    Daniel Reyes-Morales, Carlos
    Rzedowski-Calderon, Martha
    Villa-Salvador, Gabriel
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (07) : 2099 - 2133
  • [2] On even K-groups over p-adic Lie extensions of global function fields
    Lim, Meng Fai
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,
  • [3] A one way function based on ideal arithmetic in number fields
    Buchmann, J
    Paulus, S
    ADVANCES IN CRYPTOLOGY - CRYPTO'97, PROCEEDINGS, 1997, 1294 : 385 - 394
  • [4] Genus theory for global function fields
    Yin, Gang
    Li, Wei
    Zhang, Xianke
    Proceedings of the Fifth International Conference on Information and Management Sciences, 2006, 5 : 520 - 523
  • [5] On Erdos covering systems in global function fields
    Li, Huixi
    Wang, Biao
    Wang, Chunlin
    Yi, Shaoyun
    JOURNAL OF NUMBER THEORY, 2025, 266 : 269 - 280
  • [6] On solving norm equations in global function fields
    Gaal, Istvn
    Pohst, Michael E.
    JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2009, 3 (03) : 237 - 248
  • [7] Ray class fields of global function fields with many rational places
    Auer, R
    ACTA ARITHMETICA, 2000, 95 (02) : 97 - 122
  • [8] Generic polynomials for cyclic function field extensions over certain finite fields
    Marques, Sophie
    EUROPEAN JOURNAL OF MATHEMATICS, 2018, 4 (02) : 585 - 602
  • [9] Tame class field theory for global function fields
    Hess, Florian
    Massierer, Maike
    JOURNAL OF NUMBER THEORY, 2016, 162 : 86 - 115
  • [10] On improved asymptotic bounds for codes from global function fields
    Yang, Siman
    Qi, Lulu
    DESIGNS CODES AND CRYPTOGRAPHY, 2009, 53 (01) : 33 - 43