Bootstrap prediction inference of nonlinear autoregressive models

被引:0
|
作者
Wu, Kejin [1 ]
Politis, Dimitris N. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Halicioglu Data Sci Inst, La Jolla, CA 92093 USA
关键词
Bootstrap; NLAR forecasting; pertinence prediction; TIME-SERIES; MULTISTEP;
D O I
10.1111/jtsa.12739
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nonlinear autoregressive (NLAR) model plays an important role in modeling and predicting time series. One-step ahead prediction is straightforward using the NLAR model, but the multi-step ahead prediction is cumbersome. For instance, iterating the one-step ahead predictor is a convenient strategy for linear autoregressive (LAR) models, but it is suboptimal under NLAR. In this article, we first propose a simulation and/or bootstrap algorithm to construct optimal point predictors under an L1 or L2 loss criterion. In addition, we construct bootstrap prediction intervals in the multi-step ahead prediction problem; in particular, we develop an asymptotically valid quantile prediction interval as well as a pertinent prediction interval for future values. To correct the undercoverage of prediction intervals with finite samples, we further employ predictive - as opposed to fitted - residuals in the bootstrap process. Simulation and empirical studies are also given to substantiate the finite sample performance of our methods.
引用
收藏
页码:800 / 822
页数:23
相关论文
共 50 条
  • [21] ADAPTIVE PREDICTION IN NONLINEAR AUTOREGRESSIVE MODELS AND CONTROL-SYSTEMS
    LAI, TL
    ZHU, GG
    STATISTICA SINICA, 1991, 1 (02) : 309 - 334
  • [22] TOPOLOGY INFERENCE OF DIRECTED GRAPHS USING NONLINEAR STRUCTURAL VECTOR AUTOREGRESSIVE MODELS
    Shen, Yanning
    Baingana, Brian
    Giannakis, Georgios B.
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 6513 - 6517
  • [23] Bootstrap Inference for Group Factor Models
    Goncalves, Silvia
    Koh, Julia
    Perron, Benoit
    JOURNAL OF FINANCIAL ECONOMETRICS, 2024,
  • [24] GMM inference in spatial autoregressive models
    Taspinar, Suleyman
    Dogan, Osman
    Vijverberg, Wim P. M.
    ECONOMETRIC REVIEWS, 2018, 37 (09) : 931 - 954
  • [25] Subsampling inference in threshold autoregressive models
    Gonzalo, J
    Wolf, M
    JOURNAL OF ECONOMETRICS, 2005, 127 (02) : 201 - 224
  • [26] Wild bootstrap tests for autocorrelation in vector autoregressive models
    Niklas Ahlgren
    Paul Catani
    Statistical Papers, 2017, 58 : 1189 - 1216
  • [27] Wild bootstrap tests for autocorrelation in vector autoregressive models
    Ahlgren, Niklas
    Catani, Paul
    STATISTICAL PAPERS, 2017, 58 (04) : 1189 - 1216
  • [28] Bootstrap Procedures for Online Monitoring of Changes in Autoregressive Models
    Hlavka, Z.
    Huskova, M.
    Kirch, C.
    Meintanis, S. G.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (07) : 2471 - 2490
  • [29] Bootstrap tests for unit roots in seasonal autoregressive models
    Psaradakis, Z
    STATISTICS & PROBABILITY LETTERS, 2000, 50 (04) : 389 - 395
  • [30] Efficient Bayesian Inference for Nonlinear State Space Models With Univariate Autoregressive State Equation
    Kreuzer, Alexander
    Czado, Claudia
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (03) : 523 - 534