A promising composite room temperature solid electrolyte via incorporating LLZTO into cross-linked ETPTA/PEO/SN matrix for all solid state lithium batteries

被引:2
作者
Li, Bangxing [1 ,2 ,3 ]
Yi, Xianlin [1 ]
Xie, Zhenjun [4 ]
Wu, Fei [1 ]
Kang, Xing [1 ]
Kang, Shuai [5 ]
Hu, Xiaolin [1 ]
机构
[1] Chongqing Univ Technol, Coll Sci, Chongqing 400054, Peoples R China
[2] Chongqing Univ, Coll Phys,Dept Appl Phys, State Key Lab Power Transmiss Equipment & Syst Sec, Chongqing Key Lab Soft Condensed Matter Phys & Sma, Chongqing 400044, Peoples R China
[3] Chongqing Key Lab New Energy Storage Mat & Devices, Chongqing 400054, Peoples R China
[4] Chongqing Business Vocat Coll, Sch Elect Commerce, Chongqing 401331, Peoples R China
[5] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
关键词
Composite solid electrolyte; All solid-state lithium batteries; UV curing; Room temperature; POLYMER ELECTROLYTE;
D O I
10.1007/s11581-024-05451-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Composite solid electrolyte (CSE), especially the composite room temperature solid electrolyte (CRTSE), is emerging as the promising electrolyte for all-solid-state lithium batteries (ASSLB) due to their ability to combine the desirable properties of ceramic and polymer-based electrolytes and the room temperature operation condition. In this paper, the CRTSE with polyethylene oxide (PEO), bis(fluorosulfonyl)imide (LiTFSI), succinonitrile (SN), LLZTO inorganic fillers, and cross-linked ethoxylated trimethylolpropane triacrylate (ETPTA) was proposed. With the help of lithium dendrite suppression via cross-linked microscopic pore structure, enhancement of the ionic conductivity via LLZTO fillers, and wide electrochemical window via SN, the obtained LCSE showed high ionic conductivity (2.12 x 10-4 S cm-1), high Li+ transfer number (tLi+ = 0.55), and stable electrochemical window (5.0 V vs Li/Li+) at room temperature. The Li symmetrical cell with LCSE can cycle over 500 h stably with current density of 0.1 mA cm-2 and 0.5 mA cm-2 at room temperature. The full solid-state LiFePO4 cell can successfully work over 200 cycles with capacity retention ratio of about 70% at room temperature.
引用
收藏
页码:2007 / 2017
页数:11
相关论文
共 36 条
  • [21] Poly(methyl methacrylate) reinforced poly(vinylidene fluoride) composites electrospun nanofibrous polymer electrolytes as potential separator for lithium ion batteries
    Mahant Y.P.
    Kondawar S.B.
    Nandanwar D.V.
    Koinkar P.
    [J]. Materials for Renewable and Sustainable Energy, 2018, 7 (2)
  • [22] Overcoming the Interfacial Limitations Imposed by the Solid-Solid Interface in Solid-State Batteries Using Ionic Liquid-Based Interlayers
    Pervez, Syed Atif
    Kim, Guktae
    Vinayan, Bhaghavathi P.
    Cambaz, Musa A.
    Kuenzel, Matthias
    Hekmatfar, Maral
    Fichtner, Maximilian
    Passerini, Stefano
    [J]. SMALL, 2020, 16 (14)
  • [23] Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery
    Ren, Zhiheng
    Li, Jixiao
    Gong, Yangyang
    Shi, Chuan
    Liang, Jianneng
    Li, Yongliang
    He, Chuanxin
    Zhang, Qianling
    Ren, Xiangzhong
    [J]. ENERGY STORAGE MATERIALS, 2022, 51 : 130 - 138
  • [24] Infrared and Raman study of the PEO-LiTFSI polymer electrolyte
    Rey, I
    Lassegues, JC
    Grondin, J
    Servant, L
    [J]. ELECTROCHIMICA ACTA, 1998, 43 (10-11) : 1505 - 1510
  • [25] Conductivity studies of plasticized PEO-HPF6-fumed silica nanocomposite polymer electrolyte system
    Sharma, Jitender Paul
    Yamada, K.
    Sekhon, Satpal S.
    [J]. IONICS, 2012, 18 (1-2) : 151 - 158
  • [26] Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries
    Su, Shiming
    Ma, Jiabin
    Zhao, Liang
    Lin, Kui
    Li, Qidong
    Lv, Shasha
    Kang, Feiyu
    He, Yan-Bing
    [J]. CARBON ENERGY, 2021, 3 (06) : 866 - 894
  • [27] Linking the Defects to the Formation and Growth of Li Dendrite in All-Solid-State Batteries
    Wang, Hongchun
    Gao, Haowen
    Chen, Xiaoxuan
    Zhu, Jianping
    Li, Wangqin
    Gong, Zhengliang
    Li, Yangxing
    Wang, Ming-Sheng
    Yang, Yong
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (42)
  • [28] Engineering stable interfaces for three-dimensional lithium metal anodes
    Xie, Jin
    Wang, Jiangyan
    Lee, Hye Ryoung
    Yan, Kai
    Li, Yuzhang
    Shi, Feifei
    Huang, William
    Pei, Allen
    Chen, Gilbert
    Subbaraman, Ram
    Christensen, Jake
    Cui, Yi
    [J]. SCIENCE ADVANCES, 2018, 4 (07):
  • [29] Critical Review on cathode-electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries
    Xu, Jijian
    [J]. NANO-MICRO LETTERS, 2022, 14 (01)
  • [30] Rare-Earth Lanthanum Tailoring Mott-Schottky Heterojunction by Sulfur Vacancy Modification as a Bifunctional Electrocatalyst for Zinc-Air Battery
    Yang, Zhou
    Yang, Jingjing
    Yu, Chengbin
    Bai, Jirong
    Xie, Xinjie
    Jiang, Nan
    Chen, Bingbing
    Dong, Shuang
    Xiang, Meng
    Qin, Hengfei
    [J]. SMALL STRUCTURES, 2023, 4 (02):