A promising composite room temperature solid electrolyte via incorporating LLZTO into cross-linked ETPTA/PEO/SN matrix for all solid state lithium batteries

被引:2
作者
Li, Bangxing [1 ,2 ,3 ]
Yi, Xianlin [1 ]
Xie, Zhenjun [4 ]
Wu, Fei [1 ]
Kang, Xing [1 ]
Kang, Shuai [5 ]
Hu, Xiaolin [1 ]
机构
[1] Chongqing Univ Technol, Coll Sci, Chongqing 400054, Peoples R China
[2] Chongqing Univ, Coll Phys,Dept Appl Phys, State Key Lab Power Transmiss Equipment & Syst Sec, Chongqing Key Lab Soft Condensed Matter Phys & Sma, Chongqing 400044, Peoples R China
[3] Chongqing Key Lab New Energy Storage Mat & Devices, Chongqing 400054, Peoples R China
[4] Chongqing Business Vocat Coll, Sch Elect Commerce, Chongqing 401331, Peoples R China
[5] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
关键词
Composite solid electrolyte; All solid-state lithium batteries; UV curing; Room temperature; POLYMER ELECTROLYTE;
D O I
10.1007/s11581-024-05451-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Composite solid electrolyte (CSE), especially the composite room temperature solid electrolyte (CRTSE), is emerging as the promising electrolyte for all-solid-state lithium batteries (ASSLB) due to their ability to combine the desirable properties of ceramic and polymer-based electrolytes and the room temperature operation condition. In this paper, the CRTSE with polyethylene oxide (PEO), bis(fluorosulfonyl)imide (LiTFSI), succinonitrile (SN), LLZTO inorganic fillers, and cross-linked ethoxylated trimethylolpropane triacrylate (ETPTA) was proposed. With the help of lithium dendrite suppression via cross-linked microscopic pore structure, enhancement of the ionic conductivity via LLZTO fillers, and wide electrochemical window via SN, the obtained LCSE showed high ionic conductivity (2.12 x 10-4 S cm-1), high Li+ transfer number (tLi+ = 0.55), and stable electrochemical window (5.0 V vs Li/Li+) at room temperature. The Li symmetrical cell with LCSE can cycle over 500 h stably with current density of 0.1 mA cm-2 and 0.5 mA cm-2 at room temperature. The full solid-state LiFePO4 cell can successfully work over 200 cycles with capacity retention ratio of about 70% at room temperature.
引用
收藏
页码:2007 / 2017
页数:11
相关论文
共 36 条
  • [1] THE HISTORY OF POLYMER ELECTROLYTES
    ARMAND, M
    [J]. SOLID STATE IONICS, 1994, 69 (3-4) : 309 - 319
  • [2] Electrochemistry of liquids vs. solids: Polymer electrolytes
    Baril, D
    Michot, C
    Armand, M
    [J]. SOLID STATE IONICS, 1997, 94 (1-4) : 35 - 47
  • [3] A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery
    Chen, Bo
    Huang, Zhen
    Chen, Xiaotian
    Zhao, Yanran
    Xu, Qiang
    Long, Peng
    Chen, Shaojie
    Xu, Xiaoxiong
    [J]. ELECTROCHIMICA ACTA, 2016, 210 : 905 - 914
  • [4] A new type of multibenzyloxy-wrapped porphyrin sensitizers for developing efficient dye-sensitized solar cells
    Chen, Yingying
    Zeng, Kaiwen
    Li, Chengjie
    Liu, Xiujun
    Xie, Yongshu
    [J]. JOURNAL OF PORPHYRINS AND PHTHALOCYANINES, 2020, 24 (1-3) : 401 - 409
  • [5] Unexpected pressure effects on sulfide-based polymer-in-ceramic solid electrolytes for all-solid-state batteries
    Choi, Hoiju
    Kim, Minjae
    Lee, Hyobin
    Jung, Seungwon
    Lee, Young-Gi
    Lee, Yong Min
    Cho, Kuk Young
    [J]. NANO ENERGY, 2022, 102
  • [6] Ionic Conductivity Enhancement in UHMW PEO Gel Electrolytes Based on Room-Temperature Ionic Liquids and Deep Eutectic Solvents
    Gregorio, Victor
    Garcia, Nuria
    Tiemblo, Pilar
    [J]. ACS APPLIED POLYMER MATERIALS, 2022, 4 (04) : 2860 - 2870
  • [7] Grafting of Lithiophilic and Electron-Blocking Interlayer for Garnet-Based Solid-State Li Metal Batteries via One-Step Anhydrous Poly-Phosphoric Acid Post-Treatment
    Guo, Chang
    Shen, Yu
    Mao, Peng
    Liao, Kaiming
    Du, Mingjie
    Ran, Ran
    Zhou, Wei
    Shao, Zongping
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (10)
  • [8] A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery
    Ha, Hyo-Jeong
    Kwon, Yo Han
    Kim, Je Young
    Lee, Sang-Young
    [J]. ELECTROCHIMICA ACTA, 2011, 57 : 40 - 45
  • [9] Electrocatalytic oxygen evolution activities of metal chalcogenides and phosphides: Fundamentals, origins, and future strategies
    Hu, Xiaolin
    Wang, Ronghua
    Feng, Wenlin
    Xu, Chaohe
    Wei, Zidong
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2023, 81 : 167 - 191
  • [10] Effects of surface lithiated TiO2 nanorods on room-temperature properties of polymer solid electrolytes
    Hua, Song
    Li, Jia-lun
    Jing, Mao-xiang
    Chen, Fei
    Ju, Bo-wei
    Tu, Fei-yue
    Shen, Xiang-qian
    Qin, Shi-biao
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (08) : 6452 - 6462