A Multimodal Geo Dataset for High-resolution Precipitation Forecasting

被引:0
作者
Jiang, Chen [1 ]
Wang, Wenlu [2 ]
Pan, Naiqing [1 ]
Ku, Wei-Shinn [1 ]
机构
[1] Auburn Univ, Auburn, AL 36849 USA
[2] Texas A&M Univ Corpus Christi, Corpus Christi, TX USA
来源
31ST ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2023 | 2023年
关键词
Spatial-temporal Analysis; Short-term Forecast; Precipitation; Deep Learning; Transformer; TEMPERATURE;
D O I
10.1145/3589132.3625645
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate short-term precipitation prediction at a high spatial resolution is crucial for effective urban water management, flooding warning, and mitigation. However, conventional numerical weather models usually face the challenge of systematic errors and spatiotemporal biases due to an inadequate understanding of many processes and unrealistic parameterizations. In recent years, deep learning techniques have gained popularity as a tool in precipitation forecasting and risk pre-warning. To support deep learning for precipitation forecasting and flooding warning, this paper introduces a large-scale multimodal Geo dataset. This dataset incorporates spatially connected features and real-world climate data, enabling the prediction of extreme precipitations. The dataset comprises Multi-Radar/Multi-Sensor System (MRMS), High-Resolution Rapid Refresh (HRRR), Geostationary Satellite Server (GOES) data, and local hydrological data from the United States Geological Survey (USGS), providing a diverse array of information sources. The compiling of multi-source data within the proposed multimodal Geo scope can improve prediction accuracy over uni-modal data and shows high accuracy in predicting heavy rain when integrating Transformer, which offers the opportunity for more efficient urban water management and improved disaster response strategies. By providing a comprehensive view of environmental conditions, this dataset enables a deeper understanding of precipitation patterns, facilitating effective mitigation efforts.
引用
收藏
页码:572 / 575
页数:4
相关论文
共 16 条
[1]  
Andrychowicz Marcin, 2023, ARXIV230606079
[2]   Short-Term Precipitation Prediction for Contiguous United States Using Deep Learning [J].
Chen, Guoxing ;
Wang, Wei-Chyung .
GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (08)
[3]   Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project [J].
Cosgrove, BA ;
Lohmann, D ;
Mitchell, KE ;
Houser, PR ;
Wood, EF ;
Schaake, JC ;
Robock, A ;
Marshall, C ;
Sheffield, J ;
Duan, QY ;
Luo, LF ;
Higgins, RW ;
Pinker, RT ;
Tarpley, JD ;
Meng, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D22)
[4]  
DALY C, 1994, J APPL METEOROL, V33, P140, DOI 10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO
[5]  
2
[6]   Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States [J].
Daly, Christopher ;
Halbleib, Michael ;
Smith, Joseph I. ;
Gibson, Wayne P. ;
Doggett, Matthew K. ;
Taylor, George H. ;
Curtis, Jan ;
Pasteris, Phillip P. .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2008, 28 (15) :2031-2064
[7]  
Hamlet A.F., 2010, Statistical downscaling techniques for global climate model simulations of temperature and precipitation with application to water resources planning studies
[8]   An assessment of differences in gridded precipitation datasets in complex terrain [J].
Henn, Brian ;
Newman, Andrew J. ;
Livneh, Ben ;
Daly, Christopher ;
Lundquist, Jessica D. .
JOURNAL OF HYDROLOGY, 2018, 556 :1205-1219
[9]   A spatially comprehensive, hydrometeorological data set for Mexico, the US, and Southern Canada 1950-2013 [J].
Livneh, Ben ;
Bohn, Theodore J. ;
Pierce, David W. ;
Munoz-Arriola, Francisco ;
Nijssen, Bart ;
Vose, Russell ;
Cayan, Daniel R. ;
Brekke, Levi .
SCIENTIFIC DATA, 2015, 2
[10]   Gridded Ensemble Precipitation and Temperature Estimates for the Contiguous United States [J].
Newman, Andrew J. ;
Clark, Martyn P. ;
Craig, Jason ;
Nijssen, Bart ;
Wood, Andrew ;
Gutmann, Ethan ;
Mizukami, Naoki ;
Brekke, Levi .
JOURNAL OF HYDROMETEOROLOGY, 2015, 16 (06) :2481-2500