OPTICAL SOLITONS FOR NONLINEAR SCHRÖDINGER EQUATION FORMATTED IN THE ABSENCE OF CHROMATIC DISPERSION THROUGH MODIFIED EXPONENTIAL RATIONAL FUNCTION METHOD AND OTHER DISTINCT SCHEMES

被引:14
作者
Wazwaz, Abdul-Majid [1 ]
Alhejaili, Weaam [2 ]
El-Tantawy, S. A. [3 ,4 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
[2] Princess Nourah bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[3] Port Said Univ, Fac Sci, Dept Phys, Port Said 42521, Egypt
[4] Al Baha Univ, Fac Sci & Arts, Res Ctr Phys RCP, Dept Phys, Al-Baha 1988, Saudi Arabia
关键词
Schrodinger equation; modified exponential rational function method; soliton solutions; FOKAS-LENELLS EQUATION; WAVE SOLUTIONS;
D O I
10.3116/16091833/Ukr.J.Phys.Opt.2024.S1049
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This new work studies a nonlinear Schrodinger equation (NLSE) formatted without chromatic dispersion. New integration algorithms collectively reveal a variety of optical solitons and other exact solutions of distinct physical structures. This study delves into a toolbox of powerful techniques, including various forms of a refined exponential rational function method, to unlock a rich tapestry of solutions for the examined nonlinear Schrodinger equation. Each method's distinct form unveils unique traveling wave solutions alongside the essential parameter constraints governing their existence. Furthermore, under specific parameter conditions, this toolbox yields a treasure trove of novel optical solutions: modulated waves, bright and dark envelope solitons, and periodic and traveling waveforms. These findings illuminate the diverse landscape of solutions for this equation, paving the way for deeper understanding in fields like optical fibers and plasma physics.
引用
收藏
页码:S1049 / S1059
页数:11
相关论文
共 36 条
  • [1] A new modification in the exponential rational function method for nonlinear fractional differential equations
    Ahmed, Naveed
    Bibi, Sadaf
    Khan, Umar
    Mohyud-Din, Syed Tauseef
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (02): : 1 - 11
  • [2] Exponential rational function method for space-time fractional differential equations
    Aksoy, Esin
    Kaplan, Melike
    Bekir, Ahmet
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2016, 26 (02) : 142 - 151
  • [3] Pure-cubic optical solitons by Jacobi's elliptic function approach
    Al-Kalbani, Kaltham K.
    Al-Ghafri, K. S.
    Krishnan, E. V.
    Biswas, Anjan
    [J]. OPTIK, 2021, 243
  • [4] Conservation laws and optical soliton cooling with cubic-quintic-septic-nonic nonlinear refractive index
    Alshehri, Hashim M.
    Biswas, Anjan
    [J]. PHYSICS LETTERS A, 2022, 455
  • [5] Higher-order integrable evolution equation and its soliton solutions
    Ankiewicz, Adrian
    Akhmediev, Nail
    [J]. PHYSICS LETTERS A, 2014, 378 (04) : 358 - 361
  • [6] Stationary solution of the nonlinear Schrodinger's equation with log law nonlinearity by Lie symmetry analysis
    Biswas, Anjan
    Khalique, Chaudry Masood
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2011, 21 (04) : 554 - 558
  • [7] Numerical study of nonlinear Schrodinger and coupled Schrodinger equations by differential transformation method
    Borhanifar, A.
    Abazari, Reza
    [J]. OPTICS COMMUNICATIONS, 2010, 283 (10) : 2026 - 2031
  • [8] Abundant complex wave solutions for the nonautonomous Fokas-Lenells equation in presence of perturbation terms
    Ding, Yao
    Osman, M. S.
    Wazwaz, Abdul-Majid
    [J]. OPTIK, 2019, 181 : 503 - 513
  • [9] Three-dimensional rogue waves and dust-acoustic dark soliton collisions in degenerate ultradense magnetoplasma in the presence of dust pressure anisotropy
    Douanla, D. V.
    Tiofack, C. G. L.
    Alim
    Aboubakar, M.
    Mohamadou, A.
    Albalawi, Wedad
    El-Tantawy, S. A.
    El-Sherif, L. S.
    [J]. PHYSICS OF FLUIDS, 2022, 34 (08)
  • [10] Novel approximations to a nonplanar nonlinear Schrodinger equation and modeling nonplanar rogue waves/breathers in a complex plasma
    El-Tantawy, S. A.
    Salas, Alvaro H.
    Alyousef, Haifa A.
    Alharthi, M. R.
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 163