Evaluating three strategies of genome-wide association analysis for integrating data from multiple populations

被引:2
作者
Zhong, Zhanming [1 ]
Li, Guangzhen [1 ]
Xu, Zhiting [1 ]
Zeng, Haonan [1 ]
Teng, Jinyan [1 ]
Feng, Xueyan [1 ]
Diao, Shuqi [1 ]
Gao, Yahui [1 ]
Li, Jiaqi [1 ]
Zhang, Zhe [1 ,2 ]
机构
[1] South China Agr Univ, Coll Anim Sci, Natl Engn Res Ctr Breeding Swine Ind, Guangdong Prov Key Lab Agroanim Genom & Mol Breedi, Guangzhou, Peoples R China
[2] South China Agr Univ, Coll Anim Sci, Guangzhou 510642, Peoples R China
基金
中国国家自然科学基金;
关键词
detection power; GWAS; mega-analysis; meta-analysis; multiple populations; MEGA-ANALYSIS; ANIMAL QTLDB; METAANALYSIS; GWAS; STRATIFICATION; CHALLENGES; LIVESTOCK; GENES; POWER;
D O I
10.1111/age.13394
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
In livestock, genome-wide association studies (GWAS) are usually conducted in a single population (single-GWAS) with limited sample size and detection power. To enhance the detection power of GWAS, meta-analysis of GWAS (meta-GWAS) and mega-analysis of GWAS (mega-GWAS) have been proposed to integrate data from multiple populations at the level of summary statistics or individual data, respectively. However, there is a lack of comparison for these different strategies, which makes it difficult to guide the best practice of GWAS integrating data from multiple study populations. To maximize the comparison of different association analysis strategies across multiple populations, we conducted single-GWAS, meta-GWAS, and mega-GWAS for the backfat thickness of 100 kg (BFT_100) and days to 100 kg (DAYS_100) within each of the three commercial pig breeds (Duroc, Yorkshire, and Landrace). Based on controlling the genome inflation factor to one, we calculated corrected p-values (p(C)). In Yorkshire, with the largest sample size, mega-GWAS, meta-GWAS and single-GWAS detected 149, 38 and 20 significant SNPs (p(C) < 1E-5) associated with BFT_100, as well as 26, four, and one QTL, respectively. Among them, p(C) of SNPs from mega-GWAS was the lowest, followed by meta-GWAS and single-GWAS. The correlation of p(C) among the three GWAS strategies ranged from 0.60 to 0.75 and the correlation of SNP effect values between meta-GWAS and mega-GWAS was 0.74, all showing good agreement. Collectively, even though there are differences in the integration of individual data or summary statistics, integrating data from multiple populations is an effective means of genetic argument for complex traits, especially mega-GWAS versus single-GWAS.
引用
收藏
页码:265 / 276
页数:12
相关论文
共 64 条
[1]  
Bae H, 2020, PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020, P563
[2]   Implementing meta-analysis from genome-wide association studies for pork quality traits [J].
Bernal Rubio, Y. L. ;
Gualdron Duarte, J. L. ;
Bates, R. O. ;
Ernst, C. W. ;
Nonneman, D. ;
Rohrer, G. A. ;
King, D. A. ;
Shackelford, S. D. ;
Wheeler, T. L. ;
Cantet, R. J. C. ;
Steibel, J. P. .
JOURNAL OF ANIMAL SCIENCE, 2015, 93 (12) :5607-5617
[3]   Genome-wide association studies and meta-analysis uncovers new candidate genes for growth and carcass traits in pigs [J].
Blaj, Iulia ;
Tetens, Jens ;
Preuss, Siegfried ;
Bennewitz, Joern ;
Thaller, Georg .
PLOS ONE, 2018, 13 (10)
[4]   Secure large-scale genome-wide association studies using homomorphic encryption [J].
Blatt, Marcelo ;
Gusev, Alexander ;
Polyakov, Yuriy ;
Goldwasser, Shafi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (21) :11608-11613
[5]   Genome-wide association studies for feedlot and growth traits in cattle [J].
Bolormaa, S. ;
Hayes, B. J. ;
Savin, K. ;
Hawken, R. ;
Barendse, W. ;
Arthur, P. F. ;
Herd, R. M. ;
Goddard, M. E. .
JOURNAL OF ANIMAL SCIENCE, 2011, 89 (06) :1684-1697
[6]   Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals [J].
Bouwman, Aniek C. ;
Daetwyler, Hans D. ;
Chamberlain, Amanda J. ;
Ponce, Carla Hurtado ;
Sargolzaei, Mehdi ;
Schenkel, Flavio S. ;
Sahana, Goutam ;
Govignon-Gion, Armelle ;
Boitard, Simon ;
Dolezal, Marlies ;
Pausch, Hubert ;
Brondum, Rasmus F. ;
Bowman, Phil J. ;
Thomsen, Bo ;
Guldbrandtsen, Bernt ;
Lund, Mogens S. ;
Servin, Bertrand ;
Garrick, Dorian J. ;
Reecy, James ;
Vilkki, Johanna ;
Bagnato, Alessandro ;
Wang, Min ;
Hoff, Jesse L. ;
Schnabel, Robert D. ;
Taylor, Jeremy F. ;
Vinkhuyzen, Anna A. E. ;
Panitz, Frank ;
Bendixen, Christian ;
Holm, Lars-Erik ;
Gredler, Birgit ;
Hoze, Chris ;
Boussaha, Mekki ;
Sanchez, Marie-Pierre ;
Rocha, Dominique ;
Capitan, Aurelien ;
Tribout, Thierry ;
Barbat, Anne ;
Croiseau, Pascal ;
Drogemueller, Cord ;
Jagannathan, Vidhya ;
Jagt, Christy Vander ;
Crowley, John J. ;
Bieber, Anna ;
Purfield, Deirdre C. ;
Berry, Donagh P. ;
Emmerling, Reiner ;
Goetz, Kay-Uwe ;
Frischknecht, Mirjam ;
Russ, Ingolf ;
Soelkner, Johann .
NATURE GENETICS, 2018, 50 (03) :362-+
[7]   Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering [J].
Browning, Sharon R. ;
Browning, Brian L. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 81 (05) :1084-1097
[8]   Second-generation PLINK: rising to the challenge of larger and richer datasets [J].
Chang, Christopher C. ;
Chow, Carson C. ;
Tellier, Laurent C. A. M. ;
Vattikuti, Shashaank ;
Purcell, Shaun M. ;
Lee, James J. .
GIGASCIENCE, 2015, 4
[9]   Ensembl 2022 [J].
Cunningham, Fiona ;
Allen, James E. ;
Allen, Jamie ;
Alvarez-Jarreta, Jorge ;
Amode, M. Ridwan ;
Armean, Irina M. ;
Austine-Orimoloye, Olanrewaju ;
Azov, Andrey G. ;
Barnes, If ;
Bennett, Ruth ;
Berry, Andrew ;
Bhai, Jyothish ;
Bignell, Alexandra ;
Billis, Konstantinos ;
Boddu, Sanjay ;
Brooks, Lucy ;
Charkhchi, Mehrnaz ;
Cummins, Carla ;
Fioretto, Luca Da Rin ;
Davidson, Claire ;
Dodiya, Kamalkumar ;
Donaldson, Sarah ;
El Houdaigui, Bilal ;
El Naboulsi, Tamara ;
Fatima, Reham ;
Giron, Carlos Garcia ;
Genez, Thiago ;
Martinez, Jose Gonzalez ;
Guijarro-Clarke, Cristina ;
Gymer, Arthur ;
Hardy, Matthew ;
Hollis, Zoe ;
Hourlier, Thibaut ;
Hunt, Toby ;
Juettemann, Thomas ;
Kaikala, Vinay ;
Kay, Mike ;
Lavidas, Ilias ;
Le, Tuan ;
Lemos, Diana ;
Marugan, Jose Carlos ;
Mohanan, Shamika ;
Mushtaq, Aleena ;
Naven, Marc ;
Ogeh, Denye N. ;
Parker, Anne ;
Parton, Andrew ;
Perry, Malcolm ;
Pilizota, Ivana ;
Prosovetskaia, Irina .
NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) :D988-D995
[10]   Meta-GWAS Accuracy and Power (MetaGAP) Calculator Shows that Hiding Heritability Is Partially Due to Imperfect Genetic Correlations across Studies [J].
de Vlaming, Ronald ;
Okbay, Aysu ;
Rietveld, Cornelius A. ;
Johannesson, Magnus ;
Magnusson, Patrik K. E. ;
Uitterlinden, Andre G. ;
van Rooij, Frank J. A. ;
Hofman, Albert ;
Groenen, Patrick J. F. ;
Thurik, A. Roy ;
Koellinger, Philipp D. .
PLOS GENETICS, 2017, 13 (01)