Predicting Equatorial Ionospheric Convective Instability Using Machine Learning

被引:0
|
作者
Garcia, D. [1 ]
Rojas, E. L. [2 ]
Hysell, D. L. [2 ]
机构
[1] Cornell Univ, Elect & Comp Engn, Ithaca, NY 14850 USA
[2] Cornell Univ, Earth & Atmospher Sci, Ithaca, NY USA
来源
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS | 2023年 / 21卷 / 12期
关键词
machine learning; equatorial spread F; forecasting; neural networks; random forests; ionospheric irregularities; PREREVERSAL ENHANCEMENT; PLASMA BUBBLES; SPREAD-F; RADAR; DRIFT;
D O I
10.1029/2023SW003505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The numerical forecast methods used to predict ionospheric convective plasma instabilities associated with Equatorial Spread-F (ESF) have limited accuracy and are often computationally expensive. We test whether it is possible to bypass first-principle numeric simulations and forecast irregularities using machine learning models. The data are obtained from the incoherent scatter radar at the Jicamarca Radio Observatory located in Lima, Peru. Our models map vertical plasma drifts, time, and solar activity to the occurrence and location of clusters of echoes telltale of ionospheric irregularities. Our results show that these models are capable of identifying the predictive power of the tested inputs, obtaining accuracies around 75%.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Predicting Hadoop misconfigurations using machine learning
    Robert, Andrew
    Gupta, Apaar
    Shenoy, Vinayak
    Sitaram, Dinkar
    Kalambur, Subramaniam
    SOFTWARE-PRACTICE & EXPERIENCE, 2020, 50 (07) : 1168 - 1183
  • [42] Predicting Diabetes Using Machine Learning Techniques
    Kirgil, Elif Nur Haner
    Erkal, Begum
    Ayyildiz, Tulin Ercelebi
    2022 INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED COMPUTER SCIENCE AND ENGINEERING (ICTASCE), 2022, : 137 - 141
  • [43] Predicting photoresist sensitivity using machine learning
    Ghule, Balaji G.
    Kim, Minkyeong
    Jang, Ji-Hyun
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2023, 44 (11) : 900 - 910
  • [44] Predicting Phishing Vulnerabilities Using Machine Learning
    Rutherford, Sarah
    Lin, Kevin
    Blaine, Raymond W.
    SOUTHEASTCON 2022, 2022, : 779 - 786
  • [45] Predicting apple bruising using machine learning
    Holmes, G
    Cunningham, SJ
    Dela Rue, BT
    Bollen, AF
    INTERNATIONAL SYMPOSIUM ON APPLICATIONS OF MODELLING AS AN INNOVATIVE TECHNOLOGY IN THE AGRI-FOOD-CHAIN - MODEL-IT, 1998, (476): : 289 - 296
  • [46] Predicting abatacept retention using machine learning
    Alten, Rieke
    Behar, Claire
    Merckaert, Pierre
    Afari, Ebenezer
    Vannier-Moreau, Virginie
    Ohayon, Anael
    Connolly, Sean E.
    Najm, Aurelie
    Juge, Pierre-Antoine
    Liu, Gengyuan
    Rai, Angshu
    Elbez, Yedid
    Lozenski, Karissa
    ARTHRITIS RESEARCH & THERAPY, 2025, 27 (01)
  • [47] Predicting Atlantic Hurricanes Using Machine Learning
    Velasco Herrera, Victor Manuel
    Martell-Dubois, Raul
    Soon, Willie
    Velasco Herrera, Graciela
    Cerdeira-Estrada, Sergio
    Zuniga, Emmanuel
    Rosique-de la Cruz, Laura
    ATMOSPHERE, 2022, 13 (05)
  • [48] Predicting Employee Attrition using Machine Learning
    Alduayj, Sarah S.
    Rajpoot, Kashif
    PROCEEDINGS OF THE 2018 13TH INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION TECHNOLOGY (IIT), 2018, : 93 - 98
  • [49] Predicting mutational function using machine learning
    Shea, Anthony
    Bartz, Josh
    Zhang, Lei
    Dong, Xiao
    MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH, 2023, 791
  • [50] Predicting Happiness Index Using Machine Learning
    Akanbi, Kemi
    Jones, Yeboah
    Oluwadare, Sunkanmi
    Nti, Isaac Kofi
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,