Predicting Equatorial Ionospheric Convective Instability Using Machine Learning

被引:0
|
作者
Garcia, D. [1 ]
Rojas, E. L. [2 ]
Hysell, D. L. [2 ]
机构
[1] Cornell Univ, Elect & Comp Engn, Ithaca, NY 14850 USA
[2] Cornell Univ, Earth & Atmospher Sci, Ithaca, NY USA
来源
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS | 2023年 / 21卷 / 12期
关键词
machine learning; equatorial spread F; forecasting; neural networks; random forests; ionospheric irregularities; PREREVERSAL ENHANCEMENT; PLASMA BUBBLES; SPREAD-F; RADAR; DRIFT;
D O I
10.1029/2023SW003505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The numerical forecast methods used to predict ionospheric convective plasma instabilities associated with Equatorial Spread-F (ESF) have limited accuracy and are often computationally expensive. We test whether it is possible to bypass first-principle numeric simulations and forecast irregularities using machine learning models. The data are obtained from the incoherent scatter radar at the Jicamarca Radio Observatory located in Lima, Peru. Our models map vertical plasma drifts, time, and solar activity to the occurrence and location of clusters of echoes telltale of ionospheric irregularities. Our results show that these models are capable of identifying the predictive power of the tested inputs, obtaining accuracies around 75%.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Predicting the Loan Using Machine Learning
    Yamparala, Rajesh
    Saranya, Jonnakuti Raja
    Anusha, Papanaboina
    Pragathi, Saripudi
    Sri, Panguluri Bhavya
    SOFT COMPUTING FOR SECURITY APPLICATIONS, ICSCS 2022, 2023, 1428 : 701 - 712
  • [22] Predicting Swarm Equatorial Plasma Bubbles via Machine Learning and Shapley Values
    Reddy, S. A.
    Forsyth, C.
    Aruliah, A.
    Smith, A.
    Bortnik, J.
    Aa, E.
    Kataria, D. O.
    Lewis, G.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2023, 128 (06)
  • [23] Predicting Phospholipidosis Using Machine Learning
    Lowe, Robert
    Glen, Robert C.
    Mitchell, John B. O.
    MOLECULAR PHARMACEUTICS, 2010, 7 (05) : 1708 - 1714
  • [24] Advanced detection methods and machine learning analysis of temporal and spatial patterns of equatorial plasma bubble depth
    Adawa, Ifeoluwa
    Otsuka, Yuichi
    Abdelwahab, Moataz
    Mahrous, Ayman
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2025, 270
  • [25] Identifying equatorial ionospheric irregularities using in situ ion drifts
    Stoneback, R. A.
    Heelis, R. A.
    ANNALES GEOPHYSICAE, 2014, 32 (04) : 421 - 429
  • [26] Workflow for predicting undersaturated oil viscosity using machine learning
    Fotias, Sofianos Panagiotis
    Gaganis, Vassilis
    RESULTS IN ENGINEERING, 2023, 20
  • [27] Predicting Aquaculture Water Quality Using Machine Learning Approaches
    Li, Tingting
    Lu, Jian
    Wu, Jun
    Zhang, Zhenhua
    Chen, Liwei
    WATER, 2022, 14 (18)
  • [28] Predicting the Duration of Forest Fires Using Machine Learning Methods
    Kopitsa, Constantina
    Tsoulos, Ioannis G.
    Charilogis, Vasileios
    Stavrakoudis, Athanassios
    FUTURE INTERNET, 2024, 16 (11)
  • [29] Predicting mortality in hemodialysis patients using machine learning analysis
    Garcia-Montemayor, Victoria
    Martin-Malo, Alejandro
    Barbieri, Carlo
    Bellocchio, Francesco
    Soriano, Sagrario
    Pendon-Ruiz de Mier, Victoria
    Molina, Ignacio R.
    Aljama, Pedro
    Rodriguez, Mariano
    CLINICAL KIDNEY JOURNAL, 2021, 14 (05) : 1388 - 1395
  • [30] Predicting discharge using a low complexity machine learning model
    Zia, Huma
    Harris, Nick
    Merrett, Geoff
    Rivers, Mark
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2015, 118 : 350 - 360