Predicting Equatorial Ionospheric Convective Instability Using Machine Learning

被引:0
|
作者
Garcia, D. [1 ]
Rojas, E. L. [2 ]
Hysell, D. L. [2 ]
机构
[1] Cornell Univ, Elect & Comp Engn, Ithaca, NY 14850 USA
[2] Cornell Univ, Earth & Atmospher Sci, Ithaca, NY USA
来源
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS | 2023年 / 21卷 / 12期
关键词
machine learning; equatorial spread F; forecasting; neural networks; random forests; ionospheric irregularities; PREREVERSAL ENHANCEMENT; PLASMA BUBBLES; SPREAD-F; RADAR; DRIFT;
D O I
10.1029/2023SW003505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The numerical forecast methods used to predict ionospheric convective plasma instabilities associated with Equatorial Spread-F (ESF) have limited accuracy and are often computationally expensive. We test whether it is possible to bypass first-principle numeric simulations and forecast irregularities using machine learning models. The data are obtained from the incoherent scatter radar at the Jicamarca Radio Observatory located in Lima, Peru. Our models map vertical plasma drifts, time, and solar activity to the occurrence and location of clusters of echoes telltale of ionospheric irregularities. Our results show that these models are capable of identifying the predictive power of the tested inputs, obtaining accuracies around 75%.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Forecasting Equatorial Ionospheric Convective Instability With ICON Satellite Measurements
    Hysell, D. L.
    Kirchman, A.
    Harding, B. J.
    Heelis, R. A.
    England, S. L.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2023, 21 (05):
  • [2] Modeling Equatorial F-Region Ionospheric Instability Using a Regional Ionospheric Irregularity Model and WAM-IPE
    Hysell, D. L.
    Fang, T. W.
    Fuller-Rowell, T. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2022, 127 (09)
  • [3] Modeling equatorial ionospheric vertical plasma drifts using machine learning
    Shidler, S. A.
    Rodrigues, F. S.
    EARTH PLANETS AND SPACE, 2020, 72 (01):
  • [4] Predicting Equatorial Spread F at JICAMARCA Sector Via Supervised Machine Learning
    Gao, Shunzu
    Xiong, Chao
    Cai, Hongtao
    Pan, Qian
    Zhan, Weijia
    Zhang, Hong
    Zheng, Yuhao
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2025, 23 (03):
  • [5] Using ICON Satellite Data to Forecast Equatorial Ionospheric Instability Throughout 2022
    Hysell, D. L.
    Kirchman, A.
    Harding, B. J.
    Heelis, R. A.
    England, S. L.
    Frey, H. U.
    Mende, S. B.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2024, 22 (03):
  • [6] Modeling equatorial ionospheric vertical plasma drifts using machine learning
    S. A. Shidler
    F. S. Rodrigues
    Earth, Planets and Space, 72
  • [7] An Approach for Predicting Global Ionospheric TEC Using Machine Learning
    Tang, Jun
    Li, Yinjian
    Yang, Dengpan
    Ding, Mingfei
    REMOTE SENSING, 2022, 14 (07)
  • [8] Predicting bank insolvencies using machine learning techniques
    Petropoulos, Anastasios
    Siakoulis, Vasilis
    Stavroulakis, Evangelos
    Vlachogiannakis, Nikolaos E.
    INTERNATIONAL JOURNAL OF FORECASTING, 2020, 36 (03) : 1092 - 1113
  • [9] Predicting the Airspace Capacity of Terminal Area under Convective Weather Using Machine Learning
    Wang, Shijin
    Yang, Baotian
    Duan, Rongrong
    Li, Jiahao
    AEROSPACE, 2023, 10 (03)
  • [10] Prediction of Ionospheric Scintillations Using Machine Learning Techniques during Solar Cycle 24 across the Equatorial Anomaly
    Nasurudiin, Sebwato
    Yoshikawa, Akimasa
    Elsaid, Ahmed
    Mahrous, Ayman
    ATMOSPHERE, 2024, 15 (10)