Lattice Boltzmann simulations for the drying of porous media with gas-side convection-diffusion boundary

被引:2
作者
Sourya, Dasika Prabhat [1 ]
Panda, Debashis [2 ]
Kharaghani, Abdolreza [3 ]
Tsotsas, Evangelos [3 ]
Gurugubelli, Pardha S. [4 ]
Surasani, Vikranth Kumar [1 ]
机构
[1] Birla Inst Technol & Sci BITS Pilani, Dept Chem Engn, Hyderabad Campus, Hyderabad 500078, India
[2] Imperial Coll, Dept Chem Engn, London, England
[3] Otto von Guericke Univ, Thermal Proc Engn, Univ Pl 2, D-39106 Magdeburg, Germany
[4] Birla Inst Technol & Sci BITS Pilani, Dept Mech Engn, Hyderabad Campus, Hyderabad 500078, India
关键词
PORE-SCALE; MODEL; EQUATION; EVAPORATION; TRANSPORT; KINETICS; HEAT;
D O I
10.1063/5.0171573
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
One of the most significant challenges in describing the drying of porous materials is the realistic integration of internal transport phenomena into mathematical models, coupled with the external free flow. However, the intricacies of pore-scale geometry make experimentation and observation very difficult in practice, thereby making modeling techniques a useful tool for the analysis of the drying process. Among the many modeling techniques developed for drying, the lattice Boltzmann method (LBM)-based modeling approach has gained favor in recent years due to its ability to incorporate realistic geometry and transport at the pore scale. Our previous works on Shan-Chen LBM for drying of capillary porous media were based on the Bhatnagar-Gross-Krook collision operator and diffusion interface boundary conditions. This study elucidates the drying of a capillary porous medium under the influence of convection-diffusion boundary conditions at the gas side, using Shan-Chen LBM. The pore-scale effects of convection-diffusion conditions during the drying process are presented in relation to the macroscale drying kinetics. Moreover, the differences between the convection-diffusion kinetics and purely diffusion-dominated kinetics of the drying process are also presented here. This work also aims to incorporate the convection-diffusion transport phenomena into the drying process of a porous medium under the influence of an imposed thermal gradient, establishing and studying the phenomena of stabilization and destabilization of the drying front under the influence of a temperature gradient, thereby extending the lattice Boltzmann method of modeling for the simulation of convection-diffusion drying, both for the isothermal case and the imposition of a thermal gradient.
引用
收藏
页数:18
相关论文
共 64 条
[41]   Pore-scale physics of drying porous media revealed by Lattice Boltzmann simulations [J].
Panda, Debashis ;
Bhaskaran, Supriya ;
Paliwal, Shubhani ;
Kharaghani, Abdolreza ;
Tsotsas, Evangelos ;
Surasani, Vikranth Kumar .
DRYING TECHNOLOGY, 2022, 40 (06) :1114-1129
[42]   Influence of thermal gradients on the invasion patterns during drying of porous media: A lattice Boltzmann method [J].
Panda, Debashis ;
Paliwal, Shubhani ;
Sourya, Dasika Prabhat ;
Kharaghani, Abdolreza ;
Tsotsas, Evangelos ;
Surasani, Vikranth Kumar .
PHYSICS OF FLUIDS, 2020, 32 (12)
[43]   Lattice Boltzmann simulations for micro -macro interactions during isothermal drying of bundle of capillaries [J].
Panda, Debashis ;
Supriya, B. ;
Kharaghani, Abdolreza ;
Tsotsas, Evangelos ;
Surasani, Vikranth Kumar .
CHEMICAL ENGINEERING SCIENCE, 2020, 220
[44]   PERCOLATION MODEL OF DRYING UNDER ISOTHERMAL CONDITIONS IN POROUS-MEDIA [J].
PRAT, M .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1993, 19 (04) :691-704
[45]   Pore Network Models of Drying, Contact Angle, and Film Flows [J].
Prat, Marc .
CHEMICAL ENGINEERING & TECHNOLOGY, 2011, 34 (07) :1029-1038
[46]   LATTICE BGK MODELS FOR NAVIER-STOKES EQUATION [J].
QIAN, YH ;
DHUMIERES, D ;
LALLEMAND, P .
EUROPHYSICS LETTERS, 1992, 17 (6BIS) :479-484
[47]   Tricoupled hybrid lattice Boltzmann model for nonisothermal drying of colloidal suspensions in micropore structures [J].
Qin, Feifei ;
Moqaddam, Ali Mazloomi ;
Del Carro, Luca ;
Kang, Qinjun ;
Brunschwiler, Thomas ;
Derome, Dominique ;
Carmeliet, Jan .
PHYSICAL REVIEW E, 2019, 99 (05)
[48]   Study of non-isothermal liquid evaporation in synthetic micro-pore structures with hybrid lattice Boltzmann model [J].
Qin, Feifei ;
Del Carro, Luca ;
Moqaddam, Ali Mazloomi ;
Kang, Qinjun ;
Brunschwiler, Thomas ;
Derome, Dominique ;
Carmeliet, Jan .
JOURNAL OF FLUID MECHANICS, 2019, 866 :33-60
[49]   TRANSPORT IN ORDERED AND DISORDERED POROUS-MEDIA - VOLUME-AVERAGED EQUATIONS, CLOSURE PROBLEMS, AND COMPARISON WITH EXPERIMENT [J].
QUINTARD, M ;
WHITAKER, S .
CHEMICAL ENGINEERING SCIENCE, 1993, 48 (14) :2537-2564
[50]   IMMISCIBLE CELLULAR-AUTOMATON FLUIDS [J].
ROTHMAN, DH ;
KELLER, JM .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (3-4) :1119-1127