An anthraquinone-based covalent organic framework for highly reversible aqueous zinc-ion battery cathodes

被引:26
作者
Li, Lihua [1 ]
Yang, Haohao [1 ]
Wang, Xin [1 ]
Ma, Yinghu [1 ]
Ou, Weizhi [1 ]
Peng, Hui [1 ]
Ma, Guofu [1 ]
机构
[1] Northwest Normal Univ, Coll Chem & Chem Engn, Key Lab Ecofunct Polymer Mat, Key Lab Polymer Mat Minist Gansu Prov,Minist Educ, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
PRUSSIAN BLUE ANALOGS; ELECTRODE MATERIALS; QUINONE ELECTRODES; CHALLENGES;
D O I
10.1039/d3ta05892a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous rechargeable zinc-ion batteries (ZIBs) are emerging as one of the outstanding candidates for energy storage systems on account of their excellent safety, lower price, and higher volumetric energy density. Nevertheless, their advancement is troubled by the deficiency of appropriate cathode materials. Covalent organic frameworks (COFs) are being developed to be attractive materials for electrodes based on their stability, good crystallinity, and flexibility in structural design. Herein, an anthraquinone-based COF (TfDa-COF) and an anthracene-based COF (TpDa-COF) were synthesized and used for aqueous ZIB cathodes to investigate the essential relationship between the active functional group and electrochemical properties. Experimental results combined with theoretical calculations show that introducing the anthraquinone carbonyl active site into TfDa-COF is beneficial to enhance the capacity (accounts for 95.2% of the total battery capacity) and reversibility of ZIBs compared with TpDa-COF, based on the high reversibility of the anthraquinone carbonyl active site and the structural stability of TfDa-COF, which displays a good specific capacity (96.6 mA h g-1 at 0.1 A g-1) and exceptional stability over 10 000 cycles (98% capacity retention). This work provides instructive insight for molecular engineering to rationally design COF-based cathodes. TfDa-COF and TpDa-COF were used for ZIB cathodes to investigate the essential relationship between the active group and electrochemical properties. The dominance of the anthraquinone groups for coordination Zn2+ was showed by comparing the CV curves.
引用
收藏
页码:26221 / 26229
页数:9
相关论文
共 63 条
[11]   Recent advancements in Prussian blue analogues: Preparation and application in batteries [J].
Du, Guangyu ;
Pang, Huan .
ENERGY STORAGE MATERIALS, 2021, 36 (36) :387-408
[12]   A 2D Soft Covalent Organic Framework Membrane Prepared via a Molecular Bridge [J].
Du, Jingcheng ;
Sun, Qian ;
He, Wen ;
Liu, Linghao ;
Song, Ziye ;
Yao, Ayan ;
Ma, Ji ;
Cao, Dong ;
Ul Hassan, Shabi ;
Guan, Jian ;
Liu, Jiangtao .
ADVANCED MATERIALS, 2023, 35 (26)
[13]   Covalent Organic Frameworks: Design, Synthesis, and Functions [J].
Geng, Keyu ;
He, Ting ;
Liu, Ruoyang ;
Dalapati, Sasanka ;
Tan, Ke Tian ;
Li, Zhongping ;
Tao, Shanshan ;
Gong, Yifan ;
Jiang, Qiuhong ;
Jiang, Donglin .
CHEMICAL REVIEWS, 2020, 120 (16) :8814-8933
[14]   An Aqueous Ca-Ion Battery [J].
Gheytani, Saman ;
Liang, Yanliang ;
Wu, Feilong ;
Jing, Yan ;
Dong, Hui ;
Rao, Karun K. ;
Chi, Xiaowei ;
Fang, Fang ;
Yao, Yan .
ADVANCED SCIENCE, 2017, 4 (12)
[15]   Tunable Redox Chemistry and Stability of Radical Intermediates in 2D Covalent Organic Frameworks for High Performance Sodium Ion Batteries [J].
Gu, Shuai ;
Wu, Shaofei ;
Cao, Lujie ;
Li, Minchan ;
Qin, Ning ;
Zhu, Jian ;
Wang, Zhiqiang ;
Li, Yingzhi ;
Li, Zhiqiang ;
Chen, Jingjing ;
Lu, Zhouguang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (24) :9623-9628
[16]   Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries [J].
Guo, Jing ;
Ming, Jun ;
Lei, Yongjiu ;
Zhang, Wenli ;
Xia, Chuan ;
Cui, Yi ;
Alshareef, Husam N. .
ACS ENERGY LETTERS, 2019, 4 (12) :2776-2781
[17]   Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery [J].
Huang, Jianhang ;
Wang, Zhuo ;
Hou, Mengyan ;
Dong, Xiaoli ;
Liu, Yao ;
Wang, Yonggang ;
Xia, Yongyao .
NATURE COMMUNICATIONS, 2018, 9
[18]   Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry [J].
Jia, Xiaoxiao ;
Liu, Chaofeng ;
Neale, Zachary G. ;
Yang, Jihui ;
Cao, Guozhong .
CHEMICAL REVIEWS, 2020, 120 (15) :7795-7866
[19]   Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery [J].
Khayum, Abdul M. ;
Ghosh, Meena ;
Vijayakumar, Vidyanand ;
Halder, Arjun ;
Nurhuda, Maryam ;
Kumar, Sushil ;
Addicoat, Matthew ;
Kurungot, Sreekumar ;
Banerjee, Rahul .
CHEMICAL SCIENCE, 2019, 10 (38) :8889-8894
[20]   Chemically Delaminated Free-Standing Ultrathin Covalent Organic Nanosheets [J].
Khayum, M. Abdul ;
Kandambeth, Sharath ;
Mitra, Shouvik ;
Nair, Sanoop B. ;
Das, Anuja ;
Nagane, Samadhan S. ;
Mukherjee, Rabibrata ;
Banerjee, Rahul .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (50) :15604-15608