Antiferromagnetic quantum spin Hall insulators with high spin Chern numbers

被引:15
|
作者
Xue, Yang [1 ]
Xu, Wei [2 ,3 ,4 ]
Zhao, Bao [2 ,3 ,4 ,5 ]
Zhang, Jiayong [6 ]
Yang, Zhongqin [2 ,3 ,4 ,7 ]
机构
[1] East China Univ Sci & Technol, Dept Phys, Shanghai 200237, Peoples R China
[2] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Computat Phys Sci, MOE, Shanghai 200433, Peoples R China
[4] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[5] Liaocheng Univ, Sch Phys Sci & Informat Technol, Shandong Key Lab Opt Commun Sci & Technol, Liaocheng 252059, Shandong, Peoples R China
[6] Suzhou Univ Sci & Technol, Sch Phys Sci & Technol, Jiangsu Key Lab Micro & Nano Heat Fluid Flow Tech, Suzhou 215009, Peoples R China
[7] Shanghai Qi Zhi Inst, Shanghai 200030, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Antiferromagnetic systems - Antiferromagnetics - Chern numbers - Edge state - High spins - Quantum spin halls - Spin hall insulator - Stackings - Topological state - Two-dimensional;
D O I
10.1103/PhysRevB.108.075138
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Topological states in antiferromagnetic (AFM) systems have gained much attention recently. However, general proposals for the realization of a two-dimensional (2D) AFM quantum spin Hall (QSH) insulator are still absent. In this paper, we present a general proposal for 2D AFM QSH insulators by stacking 2D half quantum anomalous Hall insulators in a way that maintains the symmetry of a combination of inversion symmetry and time-reversal symmetry. Depending on the number of stack layers, the obtained AFM QSH insulators can have multiple pairs of dissipationless spin transport channels, revealing the nontrivial implication of high (even) spin Chern numbers (C-s). Using two concrete material examples, Fe2BrMgP monolayer and TiTe bilayer, we show that both intercalation and van der Waals stacks can be used to realize the proposed AFM QSH insulators. The robustness of the gapless edge states and the topological invariants (high C-s) of our AFM QSH insulators have been tested and shown to be robust against diluted magnetic impurities and weak magnetic field. The spin-chirality-spatial locking phenomenon in the edge states and their susceptibility to z-direction electric field modulation promote these systems as promising candidates for innovative spintronics applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Pure spin current in antiferromagnetic insulators
    Shen, Ka
    PHYSICAL REVIEW B, 2019, 100 (09)
  • [42] Quantum layer spin Hall effect in sliding antiferromagnetic bilayers
    Tian, Yuping
    Wang, Chao-Bo
    Zhang, Bin-Yuan
    Kong, Xiangru
    Gong, Wei-Jiang
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (29) : 10950 - 10959
  • [43] Surface-State Spin Textures and Mirror Chern Numbers in Topological Kondo Insulators
    Legner, Markus
    Rueegg, Andreas
    Sigrist, Manfred
    PHYSICAL REVIEW LETTERS, 2015, 115 (15)
  • [44] All-electrical generation of spin-polarized currents in quantum spin Hall insulators
    Tao, L. L.
    Cheung, K. T.
    Zhang, L.
    Wang, J.
    PHYSICAL REVIEW B, 2017, 95 (12)
  • [45] High-field spin dynamics of antiferromagnetic quantum spin chains
    Enderle, M
    Regnault, LP
    Broholm, C
    Reich, D
    Zaliznyak, I
    Sieling, M
    Ronnow, H
    McMorrow, D
    PHYSICA B, 2000, 276 : 560 - 561
  • [46] Real-space screening of quantum spin-Hall insulators
    Tyner, Alexander C.
    Goswami, Pallab
    PHYSICAL REVIEW MATERIALS, 2024, 8 (12):
  • [47] Quantum spin Hall effect in 2D topological insulators
    Sonin, E. B.
    SPINTRONICS IV, 2011, 8100
  • [48] Vortex Spin Liquid with Fractional Quantum Spin Hall Effect in Moire<acute accent> Chern Bands
    Zhang, Ya-Hui
    PHYSICAL REVIEW LETTERS, 2024, 133 (10)
  • [49] Room Temperature Quantum Spin Hall Insulators with a Buckled Square Lattice
    Luo, Wei
    Xiang, Hongjun
    NANO LETTERS, 2015, 15 (05) : 3230 - 3235
  • [50] Engineering quantum spin Hall insulators by strained-layer heterostructures
    Akiho, T.
    Couedo, F.
    Irie, H.
    Suzuki, K.
    Onomitsu, K.
    Muraki, K.
    APPLIED PHYSICS LETTERS, 2016, 109 (19)