A Spatial-Temporal Variational Graph Attention Autoencoder Using Interactive Information for Fault Detection in Complex Industrial Processes
被引:5
|
作者:
Lv, Mingjie
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
Lv, Mingjie
[1
]
Li, Yonggang
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
Li, Yonggang
[1
]
Liang, Huiping
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
Liang, Huiping
[1
]
Sun, Bei
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
Peng Cheng Lab, Shenzhen 518000, Peoples R ChinaCent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
Sun, Bei
[1
,2
]
Yang, Chunhua
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
Yang, Chunhua
[1
]
Gui, Weihua
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
Gui, Weihua
[1
]
机构:
[1] Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518000, Peoples R China
Modern industry processes are typically composed of multiple operating units with reaction interaction and energy-mass coupling, which result in a mixed time-varying and spatial-temporal coupling of process variables. It is challenging to develop a comprehensive and precise fault detection model for the multiple interconnected units by simple superposition of the individual unit models. In this study, the fault detection problem is formulated as a spatial-temporal fault detection problem utilizing process data of multiple interconnected unit processes. A spatial-temporal variational graph attention autoencoder (STVGATE) using interactive information is proposed for fault detection, which aims to effectively capture the spatial and temporal features of the interconnected unit processes. First, slow feature analysis (SFA) is implemented to extract temporal information that reveals the dynamic relevance of the process data. Then, an integration method of metric learning and prior knowledge is proposed to construct coupled spatial relationships based on temporal information. In addition, a variational graph attention autoencoder (VGATE) is suggested to extract temporal and spatial information for fault detection, which incorporates the dominances of variational inference and graph attention mechanisms. The proposed method can automatically extract and deeply mine spatial-temporal interactive feature information to boost detection performance. Finally, three industrial process experiments are performed to verify the feasibility and effectiveness of the proposed method. The results demonstrate that the proposed method dramatically increases the fault detection rate (FDR) and reduces the false alarm rate (FAR).
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Guo, Lei
Shi, Hongbo
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Shi, Hongbo
Tan, Shuai
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Tan, Shuai
Song, Bing
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Song, Bing
Tao, Yang
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
机构:
Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10032 USAColumbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10032 USA
Ruan, Kangrui
Di, Xuan
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10032 USA
Columbia Univ, Data Sci Inst, New York, NY 10032 USAColumbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10032 USA
机构:
Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R ChinaChinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
Li, Fang
Han, Jinrong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R ChinaChinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
Han, Jinrong
Zhu, Ziyuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R ChinaChinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
Zhu, Ziyuan
Meng, Dan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R ChinaChinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
Meng, Dan
2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN),
2019,
机构:
Univ Elect Sci & Technol China UESTC, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
Monash Univ, Fac Informat Technol, Dept Data Sci & AI, Melbourne, Vic 3800, AustraliaUniv Elect Sci & Technol China UESTC, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
Li, Jinhao
Zhang, Ruichang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Dept Comp Sci, Manchester M13 9PL, EnglandUniv Elect Sci & Technol China UESTC, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
Zhang, Ruichang
Wang, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Monash Univ, Fac Informat Technol, Dept Data Sci & AI, Melbourne, Vic 3800, Australia
Monash Energy Inst, Melbourne, Vic 3000, AustraliaUniv Elect Sci & Technol China UESTC, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
Wang, Hao
Liu, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Electrocommun, Dept Comp & Network Engn, Chofu, Tokyo 1828585, JapanUniv Elect Sci & Technol China UESTC, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
Liu, Zhi
Lai, Hongyang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R ChinaUniv Elect Sci & Technol China UESTC, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
Lai, Hongyang
Zhang, Yanru
论文数: 0引用数: 0
h-index: 0
机构:
Univ Elect Sci & Technol China UESTC, Chengdu 611731, Peoples R China
Shenzhen Inst Adv Study UESTC, Shenzhen 518060, Peoples R ChinaUniv Elect Sci & Technol China UESTC, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China