Fast Lithium Intercalation Mechanism on Surface-Modified Cathodes for Lithium-Ion Batteries

被引:13
作者
Zhou, Huangkai [1 ]
Izumi, Jun [1 ]
Asano, Sho [1 ]
Ito, Kotaro [1 ]
Watanabe, Kenta [1 ]
Suzuki, Kota [2 ]
Nemoto, Fumiya [3 ,4 ]
Yamada, Norifumi L. [3 ]
Aso, Kohei [5 ]
Oshima, Yoshifumi [5 ]
Kanno, Ryoji [2 ]
Hirayama, Masaaki [1 ,2 ]
机构
[1] Tokyo Inst Technol, Sch Mat & Chem Technol, Dept Chem Sci & Engn, 4259 Nagatsuta Cho,Midori Ku, Yokohama 2268501, Japan
[2] Tokyo Inst Technol, Inst Innovat Res, All Solid State Battery Ctr, 4259 Nagatsuta Cho,Midori Ku, Yokohama 2268501, Japan
[3] High Energy Accelerator Res Org, Inst Mat Struct Sci, 203-1 Shirakata, Ibaraki 3191106, Japan
[4] Natl Def Acad, Dept Mat Sci & Engn, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 2398686, Japan
[5] Japan Adv Inst Sci & Technol, Sch Mat Sci, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
基金
日本学术振兴会;
关键词
cathode-electrolyte interfaces; in situ neutron reflectometry; lithium cobalt oxides; lithium-ion batteries; lithium zirconium oxides; surface coatings; ELECTROLYTE INTERPHASE FORMATION; NEUTRON REFLECTOMETER SOFIA; X-RAY REFLECTOMETRY; LICOO2; CATHODE; ELECTRODE/ELECTROLYTE INTERFACE; STRUCTURAL-CHANGES; TRANSFER KINETICS; THIN-FILMS; EVOLUTION; LINI0.8CO0.2O2;
D O I
10.1002/aenm.202302402
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Enhancing the understanding of fast lithium intercalation on cathode surfaces modified by oxides is crucial for the development of electrode materials that offer high-power and long-life operation. Herein, lithium transfer is elucidated by directly observing the structural changes within the cathode, through the interface, and into the electrolyte using in situ neutron reflectometry (NR). Two films are studied-a Li2ZrO3-modified and an unmodified LiCoO2 film-and it is found that the modified film exhibits a superior rate capability. In situ NR studies indicate that the surface modification facilitates the formation of a dense cathode-electrolyte interphase (CEI), primarily composed of inorganic species. In contrast, the unmodified surface is covered by a relatively sparse and electrolyte-impregnated CEI. These structural observations suggest that lithium desolvation during intercalation primarily occurs on the CEI and LiCoO2 surfaces for the modified and unmodified films, respectively. Fast desolvation of lithium on the CEI may contribute to the superior rate capability of the surface-modified cathodes. This suggests a mechanism of fast intercalation achieved by surface modification of low ionically conductive oxides. Simultaneous chemical composition and morphological information is a powerful way to elucidate the dynamics at cathode/liquid electrolyte interfaces suitable for high-power operation. Surface modification facilitates the formation of a dense cathode-electrolyte interphase (CEI) on a lithium-ion battery cathode, structurally determined using in situ neutron reflectometry. Fast desolvation of lithium on the CEI can contribute to the superior rate capability of the surface-modified cathodes. This represents a mechanism of fast intercalation achieved by surface modification of low ionically conductive oxides.image
引用
收藏
页数:12
相关论文
共 59 条
[1]   The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M = Ni, Mn) [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Salitra, G ;
Gofer, Y ;
Heider, U ;
Oesten, R ;
Schmidt, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1322-1331
[2]  
Bard A.J., 2012, ELECTROCHEMICAL METH, Vsecond
[3]   Transient Voltammetry with Ultramicroelectrodes Reveals the Electron Transfer Kinetics of Lithium Metal Anodes [J].
Boyle, David T. ;
Kong, Xian ;
Pei, Allen ;
Rudnicki, Paul E. ;
Shi, Feifei ;
Huang, William ;
Bao, Zhenan ;
Qin, Jian ;
Cui, Yi .
ACS ENERGY LETTERS, 2020, 5 (03) :701-709
[4]   In Situ Determination of the Liquid/Solid Interface Thickness and Composition for the Li Ion Cathode LiMn1.5Ni0.5O4 [J].
Browning, James F. ;
Baggetto, Loic ;
Jungjohann, Katherine L. ;
Wang, Yongqiang ;
Tenhaeff, Wyatt E. ;
Keum, Jong K. ;
Wood, David L., III ;
Veith, Gabriel M. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (21) :18569-18576
[5]   Effect of a ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5 V [J].
Chen, ZH ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (10) :A213-A216
[6]   Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell [J].
Cho, J ;
Kim, YJ ;
Park, B .
CHEMISTRY OF MATERIALS, 2000, 12 (12) :3788-3791
[7]   High rate discharge capability of single particle electrode of LiCoO2 [J].
Dokko, Kaoru ;
Nakata, Natsuko ;
Kanamura, Kiyoshi .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :783-785
[8]   Evolution of LiFePO4 thin films interphase with electrolyte [J].
Dupre, N. ;
Cuisinier, M. ;
Zheng, Y. ;
Fernandez, V. ;
Hamon, J. ;
Hirayama, M. ;
Kanno, R. ;
Guyomard, D. .
JOURNAL OF POWER SOURCES, 2018, 382 :45-55
[9]   Characterization of interphases appearing on LiNi0.5Mn0.5O2 using 7Li MAS NMR [J].
Dupre, Nicolas ;
Martina, Jean-Frederic ;
Guyomard, Dominique ;
Yamada, Atsuo ;
Kanno, Ryoji .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :557-560
[10]   Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy [J].
Fairley, Neal ;
Fernandez, Vincent ;
Richard-Plouet, Mireille ;
Guillot-Deudon, Catherine ;
Walton, John ;
Smith, Emily ;
Flahaut, Delphine ;
Greiner, Mark ;
Biesinger, Mark ;
Tougaard, Sven ;
Morgan, David ;
Baltrusaitis, Jonas .
APPLIED SURFACE SCIENCE ADVANCES, 2021, 5