Classification of trees by Laplacian eigenvalue distribution and edge covering number

被引:2
作者
Akbari, S. [1 ]
Alaeiyan, M. [2 ]
Darougheh, M. [2 ]
Trevisan, V [3 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Iran Univ Sci & Technol, Dept Math, Tehran, Iran
[3] UFRGS Inst Matemat & Estat, Porto Alegre, Brazil
关键词
Laplacian eigenvalue; Edge covering number; Vertex connectivity; DOMINATION NUMBER; CONNECTIVITY; SPECTRUM;
D O I
10.1016/j.laa.2023.08.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a connected graph G of order n and an interval I, denote by mGI the number of Laplacian eigenvalues of G in I. In this paper, we present bounds for mGI in terms of the structural parameter ,9'(G), the edge covering number of G. We prove a known result that m(G) [1, n] = ,9'(G). We also show that all graphs G ? C-3, C(7 )with minimum degree at least two, m(G) [1, n] = ,9'(G) + 1. We present a short proof of the known result that m(G) (n - 1, n] = ?(G), where ?(G) is the vertex connectivity of G. Additionally, we classify all trees T such that mT(n - i, n] = j, for 1 = i, j = 2.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 18 条
  • [1] Laplacian eigenvalue distribution and graph parameters
    Ahanjideh, M.
    Akbari, S.
    Fakharan, M. H.
    Trevisan, V.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 632 : 1 - 14
  • [2] [Anonymous], 1985, Linear Multilinear A.
  • [3] Laplacian Distribution and Domination
    Cardoso, Domingos M.
    Jacobs, David P.
    Trevisan, Vilmar
    [J]. GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1283 - 1295
  • [4] PERMANENTAL ROOTS AND THE STAR DEGREE OF A GRAPH
    FARIA, I
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 64 (JAN) : 255 - 265
  • [5] FIEDLER M, 1973, CZECH MATH J, V23, P298
  • [6] On the sum of the Laplacian eigenvalues of a tree
    Fritscher, Eliseu
    Hoppen, Carlos
    Rocha, Israel
    Trevisan, Vilmar
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) : 371 - 399
  • [7] Gallai T., 1959, Ann. Univ. Scient. Budapestinensis Rolando Eotvos Nominatae, Sect. Math., V2, P133, DOI DOI 10.1186/1471-2105-5-76
  • [8] THE LAPLACIAN SPECTRUM OF A GRAPH
    GRONE, R
    MERRIS, R
    SUNDER, VS
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) : 218 - 238
  • [9] On the Distribution of Laplacian Eigenvalues of a Graph
    Guo, Ji Ming
    Wu, Xiao Li
    Zhang, Jiong Ming
    Fang, Kun Fu
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (11) : 2259 - 2268
  • [10] Haynes Teresa W., 1998, FUNDAMENTALS DOMINAT