Ensemble machine learning framework for daylight modelling of various building layouts

被引:8
作者
Alsharif, Rashed [1 ,2 ]
Arashpour, Mehrdad [1 ]
Golafshani, Emad [1 ]
Bazli, Milad [3 ]
Mohandes, Saeed Reza [4 ]
机构
[1] Monash Univ, Dept Civil Engn, Melbourne, Australia
[2] Umm Al Qura Univ, Dept Construct Engn AlQunfudah, Mecca, Saudi Arabia
[3] Charles Darwin Univ, Coll Engn IT & Environm, Casuarina, Australia
[4] Univ Manchester, Dept Mech Aerosp & Civil Engn, Manchester, England
基金
澳大利亚研究理事会;
关键词
artificial intelligence; indoor environment; machine learning; parametric building layout; sunlight; visual comfort; VISUAL COMFORT; PERFORMANCE; ALGORITHMS; OPTIMIZATION; DEFINITION; PREDICTION;
D O I
10.1007/s12273-023-1045-x
中图分类号
O414.1 [热力学];
学科分类号
摘要
The application of machine learning (ML) modelling in daylight prediction has been a promising approach for reliable and effective visual comfort assessment. Although many advancements have been made, no standardized ML modelling framework exists in daylight assessment. In this study, 625 different building layouts were generated to model useful daylight illuminance (UDI). Two state-of-the-art ML algorithms, eXtreme Gradient Boosting (XGBoost) and random forest (RF), were employed to analyze UDI in four categories: UDI-f (fell short), UDI-s (supplementary), UDI-a (autonomous), and UDI-e (exceeded). A feature (internal finish) was introduced to the framework to better reflect real-world representation. The results show that XGBoost models predict UDI with a maximum accuracy of R2 = 0.992. Compared to RF, the XGBoost ML models can significantly reduce prediction errors. Future research directions have been specified to advance the proposed framework by introducing new features and exploring new ML architectures to standardize ML applications in daylight prediction.
引用
收藏
页码:2049 / 2061
页数:13
相关论文
共 50 条
  • [21] The hybrid framework of ensemble technique in machine learning for phishing detection
    Mahajan, Akanksha S.
    Navale, Pradnya K.
    Patil, Vaishnavi V.
    Khadse, Vijay M.
    Mahalle, Parikshit N.
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2023, 21 (1-2) : 162 - 184
  • [22] An ensemble method of the machine learning to prognosticate the gastric cancer
    Rezaei, Hirad Baradaran
    Amjadian, Alireza
    Sebt, Mohammad Vahid
    Askari, Reza
    Gharaei, Abolfazl
    ANNALS OF OPERATIONS RESEARCH, 2023, 328 (01) : 151 - 192
  • [23] Using ensemble machine learning and metaheuristic optimization for modelling the elastic modulus of geopolymer concrete
    Golafshani, Emad
    Afzali, Seyed Ali Eftekhar
    Chiniforush, Alireza A.
    Ngo, Tuan
    CLEANER MATERIALS, 2024, 13
  • [24] Machine learning application in building energy consumption prediction: A comprehensive review
    Ji, Jingsong
    Yu, Hao
    Wang, Xudong
    Xu, Xiaoxiao
    JOURNAL OF BUILDING ENGINEERING, 2025, 104
  • [25] Machine learning based novel ensemble learning framework for electricity operational forecasting
    Weeraddana, Dilusha
    Khoa, Nguyen Lu Dang
    Mahdavi, Nariman
    ELECTRIC POWER SYSTEMS RESEARCH, 2021, 201
  • [26] Modelling Office Building Rent Prediction based on Auto Model in Machine Learning
    Mohd, Thuraiya
    Harussani, Muhamad
    Masrom, Suraya
    Johari, Noraini
    Alfat, Lathifah
    ENVIRONMENT-BEHAVIOUR PROCEEDINGS JOURNAL, 2022, 7 (19):
  • [27] A Future Direction of Machine Learning for Building Energy Management: Interpretable Models
    Gugliermetti, Luca
    Cumo, Fabrizio
    Agostinelli, Sofia
    ENERGIES, 2024, 17 (03)
  • [28] Toward the application of a machine learning framework for building life cycle energy assessment
    Venkatraj, V.
    Dixit, M. K.
    Yan, W.
    Caffey, S.
    Sideris, P.
    Aryal, A.
    ENERGY AND BUILDINGS, 2023, 297
  • [29] Machine learning-informed ensemble framework for evaluating shale gas production potential: Case study in the Marcellus Shale
    Vikara, Derek
    Remson, Donald
    Khanna, Vikas
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 84 (84)
  • [30] Ensemble Machine Learning Geostatistical Hybrid Models for Grade Control
    Erten, Gamze Erdogan
    Mokdad, Karim
    da Silva, Camilla Zacche
    Nisenson, Jed
    Brandao, Gabriela
    Boisvert, Jeff
    MATHEMATICAL GEOSCIENCES, 2025, 57 (03) : 499 - 522