Multi-omics analysis using machine learning and implications for cancer studies

被引:0
|
作者
Asada, Ken [1 ,2 ]
Takasawa, Ken
Shiraishi, Kouya [3 ]
Horinouchi, Hidehito [4 ]
Yoshida, Yukihiro [5 ]
Mukai, Masami [6 ]
Shinkai, Norio [1 ,2 ,7 ]
Yatabe, Yasushi [8 ]
Kohno, Takashi [9 ]
Hamamoto, Ryuji [1 ,2 ,7 ]
机构
[1] RIKEN Ctr AIP project, Canc Transl Res Team, Tokyo, Japan
[2] Natl Canc Ctr, Div Med AI Res Dev, Res Inst, Tokyo, Japan
[3] Natl Canc Ctr, Div Genome Biol, Res Inst, Tokyo, Japan
[4] Natl Canc Ctr, Dept Thorac Oncol, Tokyo, Japan
[5] Natl Canc Ctr, Dept Thorac Surg, Tokyo, Japan
[6] Natl Canc Ctr, Dept Med Info, Tokyo, Japan
[7] Tokyo Med Dent Univ, NCC Canc Sci, Tokyo, Japan
[8] Natl Canc Ctr, Dept Diagnost Pathol, Tokyo, Japan
[9] Natl Canc Ctr, Div Geneome Biol, C CAT, Res Inst, Tokyo, Japan
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
S8-6
引用
收藏
页码:231 / 231
页数:1
相关论文
共 50 条
  • [41] A machine learning framework that integrates multi-omics data predicts cancer-related LncRNAs
    Lin Yuan
    Jing Zhao
    Tao Sun
    Zhen Shen
    BMC Bioinformatics, 22
  • [42] Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application
    Shahrajabian, Mohamad Hesam
    Sun, Wenli
    CURRENT PHARMACEUTICAL ANALYSIS, 2023, 19 (04) : 267 - 281
  • [43] Machine Learning for multi-omics data integration and variant pathogenicity estimation
    Li, Shuang
    van der Velde, K. Joeri
    Swertz, Morris A.
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE 2018), 2018, : 301 - 301
  • [44] Prognostic significance of migrasomes in neuroblastoma through machine learning and multi-omics
    Li, Wanrong
    Xia, Yuren
    Wang, Jian
    Jin, Hao
    Li, Xin
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [45] Multi-omics and machine learning for the prevention and management of female reproductive health
    Kharb, Simmi
    Joshi, Anagha
    FRONTIERS IN ENDOCRINOLOGY, 2023, 14
  • [46] Integrated multi-omics with machine learning to uncover the intricacies of kidney disease
    Liu, Xinze
    Shi, Jingxuan
    Jiao, Yuanyuan
    An, Jiaqi
    Tian, Jingwei
    Yang, Yue
    Zhuo, Li
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
  • [47] Integration of pan-cancer multi-omics data for novel mixed subgroup identification using machine learning methods
    Khadirnaikar, Seema
    Shukla, Sudhanshu
    Prasanna, S. R. M.
    PLOS ONE, 2023, 18 (10):
  • [48] Integrating machine learning models with multi-omics analysis to decipher the prognostic significance of mitotic catastrophe heterogeneity in bladder cancer
    Haojie Dai
    Zijie Yu
    You Zhao
    Ke Jiang
    Zhenyu Hang
    Xin Huang
    Hongxiang Ma
    Li Wang
    Zihao Li
    Ming Wu
    Jun Fan
    Weiping Luo
    Chao Qin
    Weiwen Zhou
    Jun Nie
    Biology Direct, 20 (1)
  • [49] Integrated multi-omics analysis and machine learning identify hub genes and potential mechanisms of resistance to immunotherapy in gastric cancer
    Wang, Jinsong
    Feng, Jia
    Chen, Xinyi
    Weng, Yiming
    Wang, Tong
    Wei, Jiayan
    Zhan, Yujie
    Peng, Min
    AGING-US, 2024, 16 (08): : 7331 - 7356
  • [50] Metabolism pathway-based subtyping in endometrial cancer: An integrated study by multi-omics analysis and machine learning algorithms
    Liu, Xiaodie
    Wang, Wenhui
    Zhang, Xiaolei
    Liang, Jing
    Feng, Dingqing
    Li, Yuebo
    Xue, Ming
    Ling, Bin
    MOLECULAR THERAPY NUCLEIC ACIDS, 2024, 35 (02):