Multi-omics analysis using machine learning and implications for cancer studies

被引:0
|
作者
Asada, Ken [1 ,2 ]
Takasawa, Ken
Shiraishi, Kouya [3 ]
Horinouchi, Hidehito [4 ]
Yoshida, Yukihiro [5 ]
Mukai, Masami [6 ]
Shinkai, Norio [1 ,2 ,7 ]
Yatabe, Yasushi [8 ]
Kohno, Takashi [9 ]
Hamamoto, Ryuji [1 ,2 ,7 ]
机构
[1] RIKEN Ctr AIP project, Canc Transl Res Team, Tokyo, Japan
[2] Natl Canc Ctr, Div Med AI Res Dev, Res Inst, Tokyo, Japan
[3] Natl Canc Ctr, Div Genome Biol, Res Inst, Tokyo, Japan
[4] Natl Canc Ctr, Dept Thorac Oncol, Tokyo, Japan
[5] Natl Canc Ctr, Dept Thorac Surg, Tokyo, Japan
[6] Natl Canc Ctr, Dept Med Info, Tokyo, Japan
[7] Tokyo Med Dent Univ, NCC Canc Sci, Tokyo, Japan
[8] Natl Canc Ctr, Dept Diagnost Pathol, Tokyo, Japan
[9] Natl Canc Ctr, Div Geneome Biol, C CAT, Res Inst, Tokyo, Japan
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
S8-6
引用
收藏
页码:231 / 231
页数:1
相关论文
共 50 条
  • [31] Machine learning and multi-omics in precision medicine for ME/CFS
    Huang, Katherine
    Lidbury, Brett A.
    Thomas, Natalie
    Gooley, Paul R.
    Armstrong, Christopher W.
    JOURNAL OF TRANSLATIONAL MEDICINE, 2025, 23 (01)
  • [32] Multi-omics Analysis of Colorectal Cancer Metabolism
    Soga, Tomoyoshi
    CANCER SCIENCE, 2018, 109 : 193 - 193
  • [33] Effects of Multi-Omics Characteristics on Identification of Driver Genes Using Machine Learning Algorithms
    Li, Feng
    Chu, Xin
    Dai, Lingyun
    Wang, Juan
    Liu, Jinxing
    Shang, Junliang
    GENES, 2022, 13 (05)
  • [34] INTEGRATION OF MULTI-OMICS DATA USING MACHINE LEARNING TO PREDICT CROHN'S DISEASE
    Boodaghidizaji, Miad
    Haritunians, Talin
    Mcgovern, Dermot P. B.
    Li, Dalin
    GASTROENTEROLOGY, 2024, 166 (05) : S1406 - S1407
  • [35] Characterizing mitochondrial features in osteoarthritis through integrative multi-omics and machine learning analysis
    Wu, Yinteng
    Hu, Haifeng
    Wang, Tao
    Guo, Wenliang
    Zhao, Shijian
    Wei, Ruqiong
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [36] Integrated multi-omics analysis of ovarian cancer using variational autoencoders
    Hira, Muta Tah
    Razzaque, M. A.
    Angione, Claudio
    Scrivens, James
    Sawan, Saladin
    Sarkar, Mosharraf
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [37] Integrated multi-omics analysis of ovarian cancer using variational autoencoders
    Muta Tah Hira
    M. A. Razzaque
    Claudio Angione
    James Scrivens
    Saladin Sawan
    Mosharraf Sarker
    Scientific Reports, 11
  • [38] SALMON: Survival Analysis Learning With Multi-Omics Neural Networks on Breast Cancer
    Huang, Zhi
    Zhan, Xiaohui
    Xiang, Shunian
    Johnson, Travis S.
    Helm, Bryan
    Yu, Christina Y.
    Zhang, Jie
    Salama, Paul
    Rizkalla, Maher
    Han, Zhi
    Huang, Kun
    FRONTIERS IN GENETICS, 2019, 10
  • [39] A machine learning framework that integrates multi-omics data predicts cancer-related LncRNAs
    Yuan, Lin
    Zhao, Jing
    Sun, Tao
    Shen, Zhen
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [40] Breast Cancer Risk Analysis Using Deep Learning on Multi-omics Data Combined with Epigenetic Factors
    Kumar, M. Gireesh
    Aparna, P.
    Gopakumar, G.
    INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS 2022, ICBHI 2022, 2024, 108 : 35 - 43