Preparation and Characterization of Silica-Based Ionogel Electrolytes and Their Application in Solid-State Lithium Batteries

被引:1
|
作者
Huang, Ji-Cong [1 ,2 ]
Chen-Yang, Yui Whei [2 ]
Hwang, Jiunn-Jer [3 ,4 ]
机构
[1] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 10617, Taiwan
[2] Chung Yuan Christian Univ, Dept Chem, Chungli 32023, Taiwan
[3] Army Acad, Dept Chem Engn, Chungli 32092, Taiwan
[4] Chung Yuan Christian Univ, Ctr Gen Educ, Chungli 32023, Taiwan
关键词
ionogel; electrolytes; lithium battery; ionic conductivity; silica; IONIC LIQUIDS; ENERGY-STORAGE; COMPOSITE; CONFINEMENT; DESIGN;
D O I
10.3390/polym15173505
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this study, tetraethyl orthosilicate (TEOS) and methyltriethoxysilane (MTES) were used as precursors for silica, combined with the ionic liquid [BMIM-ClO4]. Lithium perchlorate was added as the lithium-ion source, and formic acid was employed as a catalyst to synthesize silica ionogel electrolytes via the sol-gel method. FT-IR and NMR identified the self-prepared ionic liquid [BMIM-ClO4], and its electrochemical window was determined using linear sweep voltammetry (LSV). The properties of the prepared silica ionogel electrolytes were further investigated through FT-IR, DSC, and 29Si MAS NMR measurements, followed by electrochemical property measurements, including conductivity, electrochemical impedance spectroscopy (EIS), LSV, and charge-discharge tests. The experimental results showed that adding methyltriethoxysilane (MTES) enhanced the mechanical strength of the silica ionogel electrolyte, simplifying its preparation process. The prepared silica ionogel electrolyte exhibited a high ionic conductivity of 1.65 x 10-3 S/cm. In the LSV test, the silica ionogel electrolyte demonstrated high electrochemical stability, withstanding over 5 V without oxidative decomposition. Finally, during the discharge-charge test, the second-cycle capacity reached 108.7 mAh/g at a discharge-charge rate of 0.2 C and a temperature of 55 & DEG;C.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Solid-state electrolytes: a way to increase the power of lithium-ion batteries
    Voropaeva, Daria Yu.
    Stenina, Irina A.
    Yaroslavtsev, Andrey B.
    RUSSIAN CHEMICAL REVIEWS, 2024, 93 (06)
  • [42] Covalent organic framework-based solid-state electrolytes for advanced batteries
    Feng, Desheng
    Qin, Zhen
    Ren, Yumei
    Xu, Yuxi
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (12) : 4037 - 4062
  • [43] High-performance lithium–sulfur batteries utilizing charged binder and solid-state ionogel electrolyte
    Jeong Mu Heo
    Junyoung Mun
    Keun Hyung Lee
    Macromolecular Research, 2024, 32 : 187 - 196
  • [44] Structural Design of Composite Polymer Electrolytes for Solid-state Lithium Metal Batteries
    Liao, Wenchao
    Liu, Chen
    CHEMNANOMAT, 2021, 7 (11) : 1177 - 1187
  • [45] Mechanisms of the Accelerated Li+ Conduction in MOF-Based Solid-State Polymer Electrolytes for All-Solid-State Lithium Metal Batteries
    Duan, Song
    Qian, Lanting
    Zheng, Yun
    Zhu, Yanfei
    Liu, Xiang
    Dong, Li
    Yan, Wei
    Zhang, Jiujun
    ADVANCED MATERIALS, 2024, 36 (32)
  • [46] A Review of Polymer-based Solid-State Electrolytes for Lithium-Metal Batteries: Structure, Kinetic, Interface Stability, and Application
    Zhao, Xiaoxue
    Wang, Chao
    Liu, Hong
    Liang, Yuhao
    Fan, Li-Zhen
    BATTERIES & SUPERCAPS, 2023, 6 (04)
  • [47] MOFs Containing Solid-State Electrolytes for Batteries
    Jiang, Shu
    Lv, Tingting
    Peng, Yi
    Pang, Huan
    ADVANCED SCIENCE, 2023, 10 (10)
  • [48] Solid-State Electrolytes for Sodium Metal Batteries
    Li, Zhaopeng
    Liu, Pei
    Zhu, Kunjie
    Zhang, Zhaoyuan
    Si, Yuchang
    Wang, Yijing
    Jiao, Lifang
    ENERGY & FUELS, 2021, 35 (11) : 9063 - 9079
  • [49] Covalent Organic Framework-Based Electrolytes for Lithium Solid-State Batteries-Recent Progress
    Polczyk, Tomasz
    Nagai, Atsushi
    BATTERIES-BASEL, 2023, 9 (09):
  • [50] Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries
    Zhao, Yun
    Yan, Jianhua
    Cai, Weiping
    Lai, Yimei
    Song, Jun
    Yu, Jianyong
    Ding, Bin
    ENERGY STORAGE MATERIALS, 2019, 23 : 306 - 313