Preparation and Characterization of Silica-Based Ionogel Electrolytes and Their Application in Solid-State Lithium Batteries

被引:1
|
作者
Huang, Ji-Cong [1 ,2 ]
Chen-Yang, Yui Whei [2 ]
Hwang, Jiunn-Jer [3 ,4 ]
机构
[1] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 10617, Taiwan
[2] Chung Yuan Christian Univ, Dept Chem, Chungli 32023, Taiwan
[3] Army Acad, Dept Chem Engn, Chungli 32092, Taiwan
[4] Chung Yuan Christian Univ, Ctr Gen Educ, Chungli 32023, Taiwan
关键词
ionogel; electrolytes; lithium battery; ionic conductivity; silica; IONIC LIQUIDS; ENERGY-STORAGE; COMPOSITE; CONFINEMENT; DESIGN;
D O I
10.3390/polym15173505
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this study, tetraethyl orthosilicate (TEOS) and methyltriethoxysilane (MTES) were used as precursors for silica, combined with the ionic liquid [BMIM-ClO4]. Lithium perchlorate was added as the lithium-ion source, and formic acid was employed as a catalyst to synthesize silica ionogel electrolytes via the sol-gel method. FT-IR and NMR identified the self-prepared ionic liquid [BMIM-ClO4], and its electrochemical window was determined using linear sweep voltammetry (LSV). The properties of the prepared silica ionogel electrolytes were further investigated through FT-IR, DSC, and 29Si MAS NMR measurements, followed by electrochemical property measurements, including conductivity, electrochemical impedance spectroscopy (EIS), LSV, and charge-discharge tests. The experimental results showed that adding methyltriethoxysilane (MTES) enhanced the mechanical strength of the silica ionogel electrolyte, simplifying its preparation process. The prepared silica ionogel electrolyte exhibited a high ionic conductivity of 1.65 x 10-3 S/cm. In the LSV test, the silica ionogel electrolyte demonstrated high electrochemical stability, withstanding over 5 V without oxidative decomposition. Finally, during the discharge-charge test, the second-cycle capacity reached 108.7 mAh/g at a discharge-charge rate of 0.2 C and a temperature of 55 & DEG;C.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] PEO-Based Solid-State Polymer Electrolytes for Wide-Temperature Solid-State Lithium Metal Batteries
    Song, Yunxuan
    Su, Meng
    Xiang, Hengying
    Kang, Junbao
    Yu, Wen
    Peng, Zhaozhao
    Wang, Hang
    Cheng, Bowen
    Deng, Nanping
    Kang, Weimin
    SMALL, 2025, 21 (03)
  • [22] Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries
    Liu, Qi
    Geng, Zhen
    Han, Cuiping
    Fu, Yongzhu
    Li, Song
    He, Yan-bing
    Kang, Feiyu
    Li, Baohua
    JOURNAL OF POWER SOURCES, 2018, 389 : 120 - 134
  • [23] Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries
    Nguyen, An-Giang
    Park, Chan-Jin
    JOURNAL OF MEMBRANE SCIENCE, 2023, 675
  • [24] Altering Mechanical Properties to Improve Electrode Contacts by Organic Modification of Silica-Based Ionogel Electrolytes for Sodium-Ion Batteries
    Mercken, Jonas
    De Sloovere, Dries
    Joos, Bjorn
    Calvi, Lavinia
    Mangione, Gianfabio
    Pitet, Louis
    Derveaux, Elien
    Adriaensens, Peter
    Van Bael, Marlies K.
    Hardy, An
    SMALL, 2023, 19 (40)
  • [25] Review on composite solid electrolytes for solid-state lithium-ion batteries
    Zhang, Z.
    Wang, X.
    Li, X.
    Zhao, J.
    Liu, G.
    Yu, W.
    Dong, X.
    Wang, J.
    MATERIALS TODAY SUSTAINABILITY, 2023, 21
  • [26] Challenges, fabrications and horizons of oxide solid electrolytes for solid-state lithium batteries
    Wei, Ran
    Chen, Shaojie
    Gao, Tianyi
    Liu, Wei
    NANO SELECT, 2021, 2 (12): : 2256 - 2274
  • [27] Progress of Polymer Electrolytes Worked in Solid-State Lithium Batteries for Wide-Temperature Application
    Hu, Long
    Gao, Xue
    Wang, Hui
    Song, Yun
    Zhu, Yongli
    Tao, Zhijun
    Yuan, Bin
    Hu, Renzong
    SMALL, 2024, 20 (31)
  • [28] Covalent organic frameworks for solid-state electrolytes of lithium metal batteries
    Gao, Zhihui
    Liu, Qing
    Zhao, Genfu
    Sun, Yongjiang
    Guo, Hong
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (14) : 7497 - 7516
  • [29] A review on modified polymer composite electrolytes for solid-state lithium batteries
    Luo, Shengbin
    Liu, Xia
    Gao, Lu
    Deng, Nanping
    Sun, Xiaobin
    Li, Yanan
    Zeng, Qiang
    Wang, Hao
    Cheng, Bowen
    Kang, Weimin
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (22) : 5019 - 5044
  • [30] Research progress on interfacial problems and solid-state electrolytes in lithium batteries
    Xiao, Zhongliang
    Jiang, Lin
    Song, Liubin
    Zhao, Tingting
    Xiao, Minzhi
    Yan, Qunxuan
    Li, Lingjun
    JOURNAL OF ENERGY STORAGE, 2024, 96