1 nm-Resolution Sorting of Sub-10 nm Nanoparticles Using a Dielectric Metasurface with Toroidal Responses

被引:7
|
作者
Luo, Hong [1 ,2 ,3 ,4 ]
Fang, Xiang [5 ]
Li, Chengfeng [1 ,2 ,3 ,4 ]
Dai, Xinhua [5 ]
Ru, Ning [5 ]
You, Minmin [6 ]
He, Tao [1 ,2 ,3 ,4 ]
Wu, Pin Chieh [7 ,8 ]
Wang, Zhanshan [1 ,2 ,3 ,4 ]
Shi, Yuzhi [1 ,2 ,3 ,4 ]
Cheng, Xinbin [1 ,2 ,3 ,4 ]
机构
[1] Tongji Univ, Inst Precis Opt Engn, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[2] MOE Key Lab Adv Microstruct Mat, Shanghai 200092, Peoples R China
[3] Tongji Univ, Shanghai Inst Intelligent Sci & Technol, Shanghai 200092, Peoples R China
[4] Shanghai Frontiers Sci Ctr Digital Opt, Shanghai 200092, Peoples R China
[5] Natl Inst Metrol, Technol Innovat Ctr Mass Spectrometry State Market, Ctr Adv Measurement Sci, Beijing 100029, Peoples R China
[6] Shanghai Jiao Tong Univ, Natl Key Lab Adv Micro & Nano Manufacture Technol, Shanghai 200240, Peoples R China
[7] Natl Cheng Kung Univ, Dept Photon, Tainan 70101, Taiwan
[8] Natl Cheng Kung Univ, Ctr Quantum Frontiers Res & Technol QFort, Tainan 70101, Taiwan
来源
SMALL SCIENCE | 2023年 / 3卷 / 09期
基金
中国国家自然科学基金;
关键词
1 nm resolution; dielectric metasurface; optofluidic sorting; sub-10 nm nanoparticles; toroidal dipole; PARTICLE MANIPULATION; TWEEZERS; TEMPERATURE; SEPARATION; EXOSOMES; BLOOD; CELLS;
D O I
10.1002/smsc.202300100
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sorting nanoparticles is of paramount importance in numerous physical, chemical, and biomedical applications. Current technologies for sorting dielectric nanoparticles have a common size limit and resolution approximately of 20 and 10 nm, respectively. It remains a grand challenge to push the limit. Herein, the new physics that deploys toroidal and multipole responses in a dielectric metasurface to exert strong and distinguishable optical forces on sub-10 nm nanoparticles is unravelled. The electric toroidal dipole, electric dipole, and quadrupole emerge with distinct light and force patterns, which can be leveraged to promise unprecedented high-precision manipulations, such as sorting sub-10 nm polystyrene nanoparticles at 1 nm resolution, sorting 20 nm proteins/exsomes at 3 nm resolution, conveying, and concentrating 100 nm gold nanoparticles. Remarkably, the design can also be employed to screen out medium-sized nanoparticles from a mixture of nanoparticles with over three sizes. This optofluidic manipulation platform opens the new way to explore intriguing optical modes for the powerful manipulation of nanoparticles with nanometer precisions and low laser powers.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Modulated illumination localization microscopy-enabled sub-10 nm resolution
    Sun, Yile
    Yin, Lu
    Cai, Mingxuan
    Wu, Hanmeng
    Hao, Xiang
    Kuang, Cuifang
    Liu, Xu
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2022, 15 (02)
  • [22] Tip-Enhanced Infrared Imaging with Sub-10 nm Resolution and Hypersensitivity
    Li, Jian
    Jahng, Junghoon
    Pang, Jie
    Morrison, William
    Li, Jin
    Lee, Eun Seong
    Xu, Jing-Juan
    Chen, Hong-Yuan
    Xia, Xing-Hua
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (05): : 1697 - 1701
  • [23] Fluorescence near-field microscopy of DNA at sub-10 nm resolution
    Ma, Ziyang
    Gerton, Jordan M.
    Wade, Lawrence A.
    Quake, Stephen R.
    PHYSICAL REVIEW LETTERS, 2006, 97 (26)
  • [24] Preparation of Sub-10 nm AgI Nanoparticles and a Study on their Phase Transition Temperature
    Yamasaki, Shuhei
    Yamada, Teppei
    Kobayashi, Hirokazu
    Kitagawa, Hiroshi
    CHEMISTRY-AN ASIAN JOURNAL, 2013, 8 (01) : 73 - 75
  • [25] Biodistribution of sub-10 nm PEG-modified radioactive/upconversion nanoparticles
    Cao, Tianye
    Yang, Yang
    Sun, Yun
    Wu, Yongquan
    Gao, Yuan
    Feng, Wei
    Li, Fuyou
    BIOMATERIALS, 2013, 34 (29) : 7127 - 7134
  • [26] Design and evaluation of aerodynamic lens system for focusing sub-10 nm nanoparticles
    Lianhua Zhang
    Jianxiong Shao
    Ximeng Chen
    Jingxiang Zhang
    Qingzong Si
    Applied Physics A, 2016, 122
  • [27] Controlling Growth of Ultrasmall Sub-10 nm Fluorescent Mesoporous Silica Nanoparticles
    Ma, Kai
    Werner-Zwanziger, Ulrike
    Zwanziger, Josef
    Wiesner, Ulrich
    CHEMISTRY OF MATERIALS, 2013, 25 (05) : 677 - 691
  • [28] Design and evaluation of aerodynamic lens system for focusing sub-10 nm nanoparticles
    Zhang, Lianhua
    Shao, Jianxiong
    Chen, Ximeng
    Zhang, Jingxiang
    Si, Qingzong
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (11):
  • [29] A Facile Synthetic Method of Silver Nanoparticles with a Continuous Size Range from sub-10 nm to 40 nm
    Piao, Longhai
    Lee, Kyung Hoon
    Min, Byoung Koun
    Kim, Woong
    Do, Young Rag
    Yoon, Sungho
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2011, 32 (01) : 117 - 121
  • [30] Using block copolymer architecture to achieve sub-10 nm periods
    Sun, Zhiwei
    Zhang, Wenxu
    Hong, Song
    Chen, Zhenbin
    Liu, Xiaohui
    Xiao, Shuaigang
    Coughlin, E. Bryan
    Russell, Thomas P.
    POLYMER, 2017, 121 : 297 - 303