1 nm-Resolution Sorting of Sub-10 nm Nanoparticles Using a Dielectric Metasurface with Toroidal Responses

被引:7
|
作者
Luo, Hong [1 ,2 ,3 ,4 ]
Fang, Xiang [5 ]
Li, Chengfeng [1 ,2 ,3 ,4 ]
Dai, Xinhua [5 ]
Ru, Ning [5 ]
You, Minmin [6 ]
He, Tao [1 ,2 ,3 ,4 ]
Wu, Pin Chieh [7 ,8 ]
Wang, Zhanshan [1 ,2 ,3 ,4 ]
Shi, Yuzhi [1 ,2 ,3 ,4 ]
Cheng, Xinbin [1 ,2 ,3 ,4 ]
机构
[1] Tongji Univ, Inst Precis Opt Engn, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[2] MOE Key Lab Adv Microstruct Mat, Shanghai 200092, Peoples R China
[3] Tongji Univ, Shanghai Inst Intelligent Sci & Technol, Shanghai 200092, Peoples R China
[4] Shanghai Frontiers Sci Ctr Digital Opt, Shanghai 200092, Peoples R China
[5] Natl Inst Metrol, Technol Innovat Ctr Mass Spectrometry State Market, Ctr Adv Measurement Sci, Beijing 100029, Peoples R China
[6] Shanghai Jiao Tong Univ, Natl Key Lab Adv Micro & Nano Manufacture Technol, Shanghai 200240, Peoples R China
[7] Natl Cheng Kung Univ, Dept Photon, Tainan 70101, Taiwan
[8] Natl Cheng Kung Univ, Ctr Quantum Frontiers Res & Technol QFort, Tainan 70101, Taiwan
来源
SMALL SCIENCE | 2023年 / 3卷 / 09期
基金
中国国家自然科学基金;
关键词
1 nm resolution; dielectric metasurface; optofluidic sorting; sub-10 nm nanoparticles; toroidal dipole; PARTICLE MANIPULATION; TWEEZERS; TEMPERATURE; SEPARATION; EXOSOMES; BLOOD; CELLS;
D O I
10.1002/smsc.202300100
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sorting nanoparticles is of paramount importance in numerous physical, chemical, and biomedical applications. Current technologies for sorting dielectric nanoparticles have a common size limit and resolution approximately of 20 and 10 nm, respectively. It remains a grand challenge to push the limit. Herein, the new physics that deploys toroidal and multipole responses in a dielectric metasurface to exert strong and distinguishable optical forces on sub-10 nm nanoparticles is unravelled. The electric toroidal dipole, electric dipole, and quadrupole emerge with distinct light and force patterns, which can be leveraged to promise unprecedented high-precision manipulations, such as sorting sub-10 nm polystyrene nanoparticles at 1 nm resolution, sorting 20 nm proteins/exsomes at 3 nm resolution, conveying, and concentrating 100 nm gold nanoparticles. Remarkably, the design can also be employed to screen out medium-sized nanoparticles from a mixture of nanoparticles with over three sizes. This optofluidic manipulation platform opens the new way to explore intriguing optical modes for the powerful manipulation of nanoparticles with nanometer precisions and low laser powers.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Deterministic Deposition of Nanoparticles with Sub-10 nm Resolution
    Fringes, Stefan
    Schwemmer, C.
    Rawlings, Colin D.
    Knoll, Armin W.
    NANO LETTERS, 2019, 19 (12) : 8855 - 8861
  • [2] Optical sorting of sub-10 nm chiral entities using non-chiral metasurface
    Mao, Libang
    Lian, Meng
    Jia, Jingyuan
    Su, Ying
    Haonan, Haonan
    Liu, Kuan
    Cao, Tun
    10TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: MICRO- AND NANO-OPTICS, CATENARY OPTICS, AND SUBWAVELENGTH ELECTROMAGNETICS, 2021, 12072
  • [3] Ferroelectric and dielectric properties of sub-10 nm BaTiO3 nanoparticles
    Hao, Fei
    Liu, Xin
    Zhu, Jinyao
    Gan, Wenyong
    He, Feiqiao
    Guo, Limin
    Hao, Yanan
    JOURNAL OF ASIAN CERAMIC SOCIETIES, 2025, 13 (01): : 107 - 115
  • [4] Bound States in the Continuum in All-Dielectric Metasurface: Separation of Sub-10 nm Enantiomers
    Mao, Libang
    Liu, Kuan
    Lian, Meng
    Jia, Jingyuan
    Su, Ying
    Ren, Haonan
    Zhou, Lei-Ming
    Cao, Tun
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (03):
  • [5] Laser Ablation of Sub-10 nm Silver Nanoparticles
    Zinovev, Alexander
    Moore, Jerome F.
    Baryshev, Sergey V.
    Schultz, J. Albert
    Lewis, Ernest
    Brinson, Bruce
    McCully, Michael
    Pellin, Michael
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (17): : 9552 - 9559
  • [6] Characterizing the protein corona of sub-10 nm nanoparticles
    Glancy, Dylan
    Zhang, Yuwei
    Wu, Jamie L. Y.
    Ouyang, Ben
    Ohta, Seiichi
    Chan, Warren C. W.
    JOURNAL OF CONTROLLED RELEASE, 2019, 304 : 102 - 110
  • [7] Mapping stress in polycrystals with sub-10 nm spatial resolution
    Polop, C.
    Vasco, E.
    Perrino, A. P.
    Garcia, R.
    NANOSCALE, 2017, 9 (37) : 13938 - 13946
  • [8] Thermal Imaging of Block Copolymers with Sub-10 nm Resolution
    Gottlieb, Steven
    Pigard, Louis
    Ryu, Yu Kyoung
    Lorenzoni, Matteo
    Evangelio, Laura
    Fernandez-Regulez, Marta
    Rawlings, Colin D.
    Spieser, Martin
    Perez-Murano, Francesc
    Mueller, Marcus
    Knoll, Armin W.
    ACS NANO, 2021, 15 (05) : 9005 - 9016
  • [9] Electromechanical imaging of biological systems with sub-10 nm resolution
    Kalinin, SV
    Rodriguez, BJ
    Jesse, S
    Thundat, T
    Gruverman, A
    APPLIED PHYSICS LETTERS, 2005, 87 (05)
  • [10] Towards sub-10 nm resolution zone plates using the overlay nanofabrication processes
    Chao, Weilun
    Anderson, Erik H.
    Fischer, Peter
    Kim, Dong-Hyun
    ADVANCED FABRICATION TECHNOLOGIES FOR MICRO/NANO OPTICS AND PHOTONICS, 2008, 6883