ENHANCING HUMAN ACTIVITY RECOGNITION THROUGH SENSOR FUSION AND HYBRID DEEP LEARNING MODEL

被引:4
|
作者
Tarekegn, Adane Nega [1 ]
Ullah, Mohib [1 ]
Cheikh, Faouzi Alaya [1 ]
Sajjad, Muhammad [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Software Data & Digital Environm SDDE Res Grp, Dept Comp Sci, Gjovik, Norway
关键词
sensor fusion; human activity recognition; deep learning; smart belt; wearable sensor;
D O I
10.1109/ICASSPW59220.2023.10193698
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Wearable-based human activity recognition (HAR) is essential for several applications, such as health monitoring, physical training, and rehabilitation. However, most HAR systems presently depend on a single sensor, typically a smartphone, due to its widespread use. To improve performance and adapt to various scenarios, this study focuses on a smart belt equipped with acceleration and gyroscope sensors for detecting activities of daily living (ADLs). The collected data was pre-processed, fused and used to train a hybrid deep learning model incorporating a CNN and BiLSTM network. We evaluated the effect of window length on recognition accuracy and conducted a performance analysis of the proposed model. Our framework achieved an overall accuracy of 96% at a window length of 5 seconds, demonstrating its effectiveness in recognizing ADLs. The results show that belt sensor fusion for HAR provides valuable insights into human behaviour and could enhance applications such as healthcare, fitness, and sports training.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] FMCW Radar Sensor Based Human Activity Recognition using Deep Learning
    Ahmed, Shahzad
    Park, Junbyung
    Cho, Sung Ho
    2022 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2022,
  • [42] Human Activity Recognition from Body Sensor Data using Deep Learning
    Mohammad Mehedi Hassan
    Shamsul Huda
    Md Zia Uddin
    Ahmad Almogren
    Majed Alrubaian
    Journal of Medical Systems, 2018, 42
  • [43] Human Activity Recognition from Body Sensor Data using Deep Learning
    Hassan, Mohammad Mehedi
    Huda, Shamsul
    Uddin, Md Zia
    Almogren, Ahmad
    Alrubaian, Majed
    JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (06)
  • [44] A Seismic Sensor based Human Activity Recognition Framework using Deep Learning
    Choudhary, Priyankar
    Goel, Neeraj
    Saini, Mukesh
    2021 17TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2021), 2021,
  • [45] Towards Activity Recognition through Multidimensional Mobile Data Fusion with a Smartphone and Deep Learning
    Cao, Junkuo
    Lin, Mingcai
    Wang, Han
    Fang, Jiacheng
    Xu, Yueshen
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [46] HIERARCHICAL DEEP LEARNING MODEL WITH INERTIAL AND PHYSIOLOGICAL SENSORS FUSION FOR WEARABLE-BASED HUMAN ACTIVITY RECOGNITION
    Hwang, Dae Yon
    Ng, Pai Chet
    Yu, Yuanhao
    Wang, Yang
    Spachos, Petros
    Hatzinakos, Dimitrios
    Plataniotis, Konstantinos N.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 21 - 25
  • [47] Combined deep centralized coordinate learning and hybrid loss for human activity recognition
    Bourjandi, Masoumeh
    Yadollahzadeh-Tabari, Meisam
    Golsorkhtabaramiri, Mehdi
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (22):
  • [48] Enhancing Human Activity Recognition through Deep Learning: Comparative Analysis of Single Frame CNN and Convolutional LSTM Models
    Kumar, Manoj R.
    Murugan, Bala M. S.
    Pooja, S.
    2024 9TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS ENGINEERING, ICCRE 2024, 2024, : 400 - 405
  • [49] A Deep Hybrid Architecture for Human Activity Recognition
    Stylianou-Nikolaidou, Sofia
    Vernikos, Ioannis
    Mathe, Eirini
    Spyrou, Evaggelos
    THE 14TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2021, 2021, : 254 - 255
  • [50] Sensor-based Complex Human Activity Recognition from Smartwatch Data using Hybrid Deep Learning Network
    Mekruksavanich, Sakorn
    Jitpattanakul, Anuchit
    2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,