Non-destructive Internal Defect Detection of In-Shell Walnuts by X-ray Technology Based on Improved Faster R-CNN

被引:3
|
作者
Zhang, Hui [1 ]
Ji, Shuai [1 ]
Shao, Mingming [1 ]
Pu, Houxu [1 ]
Zhang, Liping [1 ]
机构
[1] Xinjiang Univ, Coll Mech Engn, Urumqi 830017, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 12期
关键词
walnuts; X-ray images; non-destructive detection; food-quality inspection; improved Faster R-CNN; CLASSIFIERS;
D O I
10.3390/app13127311
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The purpose of this study was to achieve non-destructive detection of the internal defects of in-shell walnuts using X-ray radiography technology based on improved Faster R-CNN network model. First, the FPN structure was added to the feature-extraction layer to extract richer image information. Then, ROI Align was used instead of ROI Pooling for eliminating the localization bias problem caused by the quantization operation. Finally, the Softer-NMS module was introduced to the final regression layer with the predicted bounding box for improving the localization accuracy of the candidate boxes. The results of the study indicated that the proposed network model can effectively identify internal defects of in-shell walnuts. Specifically, the discrimination accuracies of the in-shell sound, shriveled, and empty-shell walnuts were 96.14%, 91.72%, and 94.80%, respectively, and the highest overall accuracy was 94.22%. Compared to the original Faster R-CNN network model, the improved Faster R-CNN model achieved an increase of 5.86% in mAP and 5.65% in F-1-value. Consequently, the proposed method can be applied for the in-shell walnuts with shriveled and empty-shell defects.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] MAM Faster R-CNN: Improved Faster R-CNN based on Malformed Attention Module for object detection on X-ray security inspection
    Zhang, Wenming
    Zhu, Qikai
    Li, Yaqian
    Li, Haibin
    DIGITAL SIGNAL PROCESSING, 2023, 139
  • [2] Insulator Defect Detection Based on Improved Faster R-CNN
    Tang, Jinpeng
    Wang, Jiang
    Wang, Hailin
    Wei, Jiyi
    Wei, Yijian
    Qin, Mingsheng
    2022 4TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2022), 2022, : 541 - 546
  • [3] Gun Detection with Faster R-CNN in X-Ray Images
    Karakaya, Ismail
    Safak, Ilgin
    Ozturk, Orkun
    Bal, Murat
    Esin, Yunus Emre
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [4] Textile Fabric Defect Detection Based on Improved Faster R-CNN
    He, Dongfang
    Wen, Jiajun
    Lai, Zhihui
    AATCC JOURNAL OF RESEARCH, 2021, 8 (1_SUPPL) : 83 - 91
  • [5] Textile Fabric Defect Detection Based on Improved Faster R-CNN
    He, Dongfang
    Wen, Jiajun
    Lai, Zhihui
    AATCC JOURNAL OF RESEARCH, 2021, 8 : 82 - 90
  • [6] Defect Detection of Pantograph Slider Based on Improved Faster R-CNN
    Jiang, Siyang
    Wei, Xiukun
    Yang, Ziming
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 5278 - 5283
  • [7] An Improved Faster R-CNN for Steel Surface Defect Detection
    Shi, Xiancong
    Zhou, Sike
    Tai, Yichun
    Wang, Jinzhong
    Wu, Shoucang
    Liu, Jinrong
    Xu, Kun
    Peng, Tao
    Zhang, Zhijiang
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,
  • [8] Fabric Defect Detection Based on Faster R-CNN
    Liu, Zhoufeng
    Liu, Xianghui
    Li, Chunlei
    Li, Bicao
    Wang, Baorui
    NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [9] Improved Faster R-CNN Based Surface Defect Detection Algorithm for Plates
    Xia, Baizhan
    Luo, Hao
    Shi, Shiguang
    Computational Intelligence and Neuroscience, 2022, 2022
  • [10] Weld defect detection of metro vehicle based on improved faster R-CNN
    Zhong, Jiajun
    He, Deqiang
    Miao, Jian
    Chen, Yanjun
    Yao, Xiaoyang
    Journal of Railway Science and Engineering, 2020, 17 (04) : 996 - 1003