Hybrid deep neural network with dimension attention for state-of-health estimation of Lithium-ion Batteries

被引:27
|
作者
Bao, Xinyuan [1 ]
Chen, Liping [1 ]
Lopes, Antonio M. [2 ]
Li, Xin [1 ]
Xie, Siqiang [1 ]
Li, Penghua [3 ]
Chen, YangQuan [4 ]
机构
[1] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
[2] Univ Porto, Fac Engn, LAETA INEGI, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[3] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[4] Univ Calif Merced, Embedded Syst & Automat Lab, Mechatron, Merced, CA USA
关键词
Lithium-ion Batteries; State-of-health; Long-short-term memory; Convolutional neural network; GAUSSIAN PROCESS REGRESSION; USEFUL LIFE PREDICTION; CHARGE; CAPACITY; MODEL; DIAGNOSIS;
D O I
10.1016/j.energy.2023.127734
中图分类号
O414.1 [热力学];
学科分类号
摘要
Lithium-ion batteries (LIBs) are widely used and became the main energy storage medium for many devices. Accurate estimation of LIBs state-of-health (SOH) is crucial for safe and reliable operation of devices. This study designs an end-to-end multi-battery shared hybrid neural network (NN) prognostic framework that combines a convolutional neural network (CNN), a multi-layer variant long-short-term memory (VLSTM) NN and a dimensional attention mechanism (CNN-VLSTM-DA) to SOH estimation for LIBs. First, feature extraction and selection on the raw input data are performed by using a CNN. Second, a suitable VLSTM is designed. The network adds a "peephole connection"to the forget gate and output gate, respectively, which enhances the network's ability to distinguish subtle features between input sequences. Besides, the forget gate and the input gate are coupled, so that, together, they determine the information that needs to be forgotten and the new data that needs to be added. Then, the output data of the CNN layer are fed into a multi-layer VLSTM NN to further capture the temporal correlation of these data. Finally, the attention mechanism is applied to the output of the VLSTM, to assign different weights to the features of each dimension and to give the prediction results. Several experiments are carried out on three datasets from NASA, CALCE and Oxford. These include full charge/discharge data, charge/discharge data in different SOC ranges, and non-fixed discharge current data. The results verify the effectiveness of the proposed method.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Co-Estimation of State-of-Charge and State-of-Health for High-Capacity Lithium-Ion Batteries
    Xiong, Ran
    Wang, Shunli
    Feng, Fei
    Yu, Chunmei
    Fan, Yongcun
    Cao, Wen
    Fernandez, Carlos
    BATTERIES-BASEL, 2023, 9 (10):
  • [42] Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data
    Lin, Chuanping
    Xu, Jun
    Mei, Xuesong
    ENERGY STORAGE MATERIALS, 2023, 54 : 85 - 97
  • [43] State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
    Yanshuo Liu
    Licheng Wang
    Dezhi Li
    Kai Wang
    Protection and Control of Modern Power Systems, 2023, 8
  • [44] Online State-of-Health Estimation for NMC Lithium-Ion Batteries Using an Observer Structure
    Neunzling, Jan
    Winter, Hanno
    Henriques, David
    Fleckenstein, Matthias
    Markus, Torsten
    BATTERIES-BASEL, 2023, 9 (10):
  • [45] Improving the state-of-health estimation of lithium-ion batteries based on limited labeled data
    Han, Dou
    Zhang, Yongzhi
    Ruan, Haijun
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [46] Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks
    He, Zhiwei
    Gao, Mingyu
    Ma, Guojin
    Liu, Yuanyuan
    Chen, Sanxin
    JOURNAL OF POWER SOURCES, 2014, 267 : 576 - 583
  • [47] A recurrent deep neural network for predicting the state of health of lithium-ion batteries
    Al-Shamma'a, Abdullrahman A.
    ENERGY STORAGE, 2024, 6 (01)
  • [48] State of health prediction of lithium-ion batteries based on SSA optimized hybrid neural network model
    Zhou, Jiani
    Wang, Shunli
    Cao, Wen
    Xie, Yanxin
    Fernandez, Carlos
    ELECTROCHIMICA ACTA, 2024, 487
  • [49] State-of-Health Estimation for Lithium-Ion Batteries Based on the Multi-Island Genetic Algorithm and the Gaussian Process Regression
    Wang, Zhenpo
    Ma, Jun
    Zhang, Lei
    IEEE ACCESS, 2017, 5 : 21286 - 21295
  • [50] Capacity estimation method of lithium-ion batteries based on deep convolution neural network
    Song, Renwang
    Yang, Lei
    Chen, Linying
    Dong, Zengshou
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2022, 20 (02) : 119 - 125