Hybrid deep neural network with dimension attention for state-of-health estimation of Lithium-ion Batteries

被引:41
作者
Bao, Xinyuan [1 ]
Chen, Liping [1 ]
Lopes, Antonio M. [2 ]
Li, Xin [1 ]
Xie, Siqiang [1 ]
Li, Penghua [3 ]
Chen, YangQuan [4 ]
机构
[1] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
[2] Univ Porto, Fac Engn, LAETA INEGI, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[3] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[4] Univ Calif Merced, Embedded Syst & Automat Lab, Mechatron, Merced, CA USA
关键词
Lithium-ion Batteries; State-of-health; Long-short-term memory; Convolutional neural network; GAUSSIAN PROCESS REGRESSION; USEFUL LIFE PREDICTION; CHARGE; CAPACITY; MODEL; DIAGNOSIS;
D O I
10.1016/j.energy.2023.127734
中图分类号
O414.1 [热力学];
学科分类号
摘要
Lithium-ion batteries (LIBs) are widely used and became the main energy storage medium for many devices. Accurate estimation of LIBs state-of-health (SOH) is crucial for safe and reliable operation of devices. This study designs an end-to-end multi-battery shared hybrid neural network (NN) prognostic framework that combines a convolutional neural network (CNN), a multi-layer variant long-short-term memory (VLSTM) NN and a dimensional attention mechanism (CNN-VLSTM-DA) to SOH estimation for LIBs. First, feature extraction and selection on the raw input data are performed by using a CNN. Second, a suitable VLSTM is designed. The network adds a "peephole connection"to the forget gate and output gate, respectively, which enhances the network's ability to distinguish subtle features between input sequences. Besides, the forget gate and the input gate are coupled, so that, together, they determine the information that needs to be forgotten and the new data that needs to be added. Then, the output data of the CNN layer are fed into a multi-layer VLSTM NN to further capture the temporal correlation of these data. Finally, the attention mechanism is applied to the output of the VLSTM, to assign different weights to the features of each dimension and to give the prediction results. Several experiments are carried out on three datasets from NASA, CALCE and Oxford. These include full charge/discharge data, charge/discharge data in different SOC ranges, and non-fixed discharge current data. The results verify the effectiveness of the proposed method.
引用
收藏
页数:12
相关论文
共 47 条
[1]  
Birkl Christoph, 2017, ORA - Data
[2]   State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks [J].
Chaoui, Hicham ;
Ibe-Ekeocha, Chinemerem Christopher .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (10) :8773-8783
[3]   Remaining Useful Life Prediction and State of Health Diagnosis of Lithium-Ion Battery Based on Second-Order Central Difference Particle Filter [J].
Chen, Yuan ;
He, Yigang ;
Li, Zhong ;
Chen, Liping ;
Zhang, Chaolong .
IEEE ACCESS, 2020, 8 :37305-37313
[4]   Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network [J].
Cheng, Gong ;
Wang, Xinzhi ;
He, Yurong .
ENERGY, 2021, 232
[5]   Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries [J].
Deng, Yuanwang ;
Ying, Hejie ;
Jiaqiang, E. ;
Zhu, Hao ;
Wei, Kexiang ;
Chen, Jingwei ;
Zhang, Feng ;
Liao, Gaoliang .
ENERGY, 2019, 176 :91-102
[6]   Data-Driven Battery State of Health Estimation Based on Random Partial Charging Data [J].
Deng, Zhongwei ;
Hu, Xiaosong ;
Li, Penghua ;
Lin, Xianke ;
Bian, Xiaolei .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (05) :5021-5031
[7]   General Discharge Voltage Information Enabled Health Evaluation for Lithium-Ion Batteries [J].
Deng, Zhongwei ;
Hu, Xiaosong ;
Lin, Xianke ;
Xu, Le ;
Che, Yunhong ;
Hu, Lin .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2021, 26 (03) :1295-1306
[8]   Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery [J].
Deng, Zhongwei ;
Yang, Lin ;
Cai, Yishan ;
Deng, Hao ;
Sun, Liu .
ENERGY, 2016, 112 :469-480
[9]   Lithium-Ion Battery State of Charge (SoC) Estimation with Non-Electrical parameter using Uniform Fiber Bragg Grating (FBG) [J].
Ee, Yen-Jie ;
Tey, Kok-Soon ;
Lim, Kok-Sing ;
Shrivastava, Prashant ;
Adnan, S. B. R. S. ;
Ahmad, Harith .
JOURNAL OF ENERGY STORAGE, 2021, 40 (40)
[10]   A novel deep learning framework for state of health estimation of lithium-ion battery [J].
Fan, Yaxiang ;
Xiao, Fei ;
Li, Chaoran ;
Yang, Guorun ;
Tang, Xin .
JOURNAL OF ENERGY STORAGE, 2020, 32