Temperature-Based State-of-Charge Estimation Using Neural Networks, Gradient Boosting Machine and a Jetson Nano Device for Batteries

被引:1
|
作者
Wang, Donghun [1 ]
Hwang, Jihwan [1 ]
Lee, Jonghyun [1 ]
Kim, Minchan [1 ]
Lee, Insoo [1 ]
机构
[1] Kyungpook Natl Univ, Sch Elect & Elect Engn, Daegu 41566, South Korea
关键词
lithium-ion battery; state of charge; multilayer neural network; long short-term memory; gated recurrent unit; gradient boosting machine; vehicle-driving simulator; Jetson Nano device; real time; LITHIUM-ION BATTERY;
D O I
10.3390/en16062639
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion batteries are commonly used in electric vehicles, mobile phones, and laptops because of their environmentally friendly nature, high energy density, and long lifespan. Despite these advantages, lithium-ion batteries may experience overcharging or discharging if they are not continuously monitored, leading to fire and explosion risks, in cases of overcharging, and decreased capacity and lifespan, in cases of overdischarging. Another factor that can decrease the capacity of these batteries is their internal resistance, which varies with temperature. This study proposes an estimation method for the state of charge (SOC) using a neural network (NN) model that is highly applicable to the external temperatures of batteries. Data from a vehicle-driving simulator were used to collect battery data at temperatures of 25 degrees C, 30 degrees C, 35 degrees C, and 40 degrees C, including voltage, current, temperature, and time data. These data were used as inputs to generate the NN models. The NNs used to generate the model included the multilayer neural network (MNN), long short-term memory (LSTM), gated recurrent unit (GRU), and gradient boosting machine (GBM). The SOC of the battery was estimated using the model generated with a suitable temperature parameter and another model generated using all the data, regardless of the temperature parameter. The performance of the proposed method was confirmed, and the SOC-estimation results demonstrated that the average absolute errors of the proposed method were superior to those of the conventional technique. In the estimation of the battery's state of charge in real time using a Jetson Nano device, an average error of 2.26% was obtained when using the GRU-based model. This method can optimize battery performance, extend battery life, and maintain a high level of safety. It is expected to have a considerable impact on multiple environments and industries, such as electric vehicles, mobile phones, and laptops, by taking advantage of the lightweight and miniaturized form of the Jetson Nano device.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network
    Yang, Fangfang
    Li, Weihua
    Li, Chuan
    Miao, Qiang
    ENERGY, 2019, 175 : 66 - 75
  • [22] Research on state-of-charge Estimation of Lithium-ion Batteries Based on Improved Sparrow Search Algorithm-BP Neural Network
    Li, Yang
    Wang, Shunli
    Chen, Lei
    Yu, Peng
    Chen, Xianpei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (08):
  • [23] State-of-Charge Estimation for Lithium-Ion Batteries Based on Temperature-Based Fractional-Order Model and Dual Fractional-Order Kalman Filter
    Wei, Ying
    Ling, Liuyi
    IEEE ACCESS, 2022, 10 : 37131 - 37148
  • [24] State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks
    Chaoui, Hicham
    Ibe-Ekeocha, Chinemerem Christopher
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (10) : 8773 - 8783
  • [25] State-of-Charge Estimation of Lithium-ion Batteries by Lebesgue Sampling-Based EKF Method
    Yan, Wuzhao
    Niu, Guangxing
    Tang, Shijie
    Zhang, Bin
    IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 3233 - 3238
  • [26] Online estimation of state-of-charge based on the H infinity and unscented Kalman filters for lithium ion batteries
    Yu, Quanqing
    Xiong, Rui
    Lin, Cheng
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2791 - 2796
  • [27] State-of-Charge and State-of-Energy Estimation for Lithium-ion Batteries Using Sliding-Mode Observers
    Feng, Yong
    Bai, Fan
    Xue, Chen
    Han, Fengling
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 2382 - 2385
  • [28] State-of-Charge Estimation of Lithium-Ion Batteries Using Convolutional Neural Network With Self-Attention Mechanism
    Chen, Jianlong
    Zhang, Chenghao
    Chen, Cong
    Lu, Chenlei
    Xuan, Dongji
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2023, 20 (03)
  • [29] State-of-charge estimation for lithium-ion batteries based on modified unscented Kalman filter using improved parameter identification
    Yao, Bin
    Cai, Yongxiang
    Liu, Wei
    Wang, Yang
    Chen, Xin
    Liao, Qiangqiang
    Fu, Zaiguo
    Cheng, Zhiyuan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (05):
  • [30] Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries
    Shrivastava, Prashant
    Soon, Tey Kok
    Bin Idris, Mohd Yamani Idna
    Mekhilef, Saad
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 113