Electrochemical energy storage and conversion play an important role in the sustainable devel-opment of an environmentally friendly society, but the performances of electrochemical devices, especially reaction kinetics, are limited by conventional physical and chemical material prepa-ration technologies. Pulsed laser is a promising tool for tackling this problem, because it enables three-dimensional (3D) architecting of materials in micro/nanoscales with unique advantages of high precision, efficiency, controllability, cost-effectiveness, and degree-of-freedom. Thanks to the rapid iterating laser techniques, various novel materials have been fabricated through pulsed laser micro/nanostructuring, paving a new way for fabricating electrochemical devices with significantly improved performances, in terms of promoting ion diffusion, mitigating mechanical tension, regulating local electric field, and modulating local electrochemical environment. With these great opportunities, pulsed laser 3D-micro/nanostructuring of materials has become a thriving field and gained increasing popularity in the past decade. However, there still lacks a review that categorizes the techniques and summarizes the development trends in this field. Herein, we provide a comprehensive review on the recent advances in pulsed laser 3D-micro/ nanostructuring of materials for electrochemical energy storage and conversion, emphasizing rechargeable batteries, supercapacitors, and electrocatalysts. We also present a prospect for future challenges as well as opportunities of this technology.