Experimental study on flexural behavior of hollow steel-UHPC composite bridge deck

被引:62
|
作者
Zou, Yang [1 ,2 ]
Zheng, Kaidi [1 ,2 ]
Zhou, Zhixiang [3 ]
Zhang, Zhongya [1 ,2 ]
Guo, Jincen [1 ,2 ,3 ]
Jiang, Jinlong [1 ,2 ,3 ]
机构
[1] Chongqing Jiaotong Univ, State Key Lab Mt Bridge & Tunnel Engn, Chongqing 400074, Peoples R China
[2] Chongqing Jiaotong Univ, Sch Civil Engn, Chongqing 400074, Peoples R China
[3] Shenzhen Univ, Sch Civil & Transportat Engn, Dept Civil Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite structure; Hollow slab; Flexural capacity; UHPC; Steel tubes; TENSILE BEHAVIOR; SHEAR BEHAVIOR; CORE SLABS; PRECAST;
D O I
10.1016/j.engstruct.2022.115087
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The application of UHPC might reduce the weight of the bridge deck and improve its crack resistance and durability. This study proposes a hollow steel-UHPC composite deck composed of the hollow steel tube and UHPC without shear connectors. The flexural test was performed on the hollow steel-UHPC composite deck to evaluate the effects of the embedded steel tubes, steel bars, UHPC material, and flange thickness. In addition, the mechanical properties of hollow steel-UHPC composite decks were compared with waffle decks and solid concrete decks. Results indicated that the hollow steel-UHPC composite deck had excellent bending capacity and material utilization. The load-deflection curve of the composite decks could be divided into four stages: elastic stage, working stage with cracks, nonlinear stage, and fully plastic stage. Without any additional shear connection, the steel-UHPC interface slip did not occur until the load reached 0.89Pu. In the ultimate limit state, the strains at the mid-span cross-section of steel and UHPC were almost the same, suggesting that there was a good composite effect between the embedded steel tube and the outer UHPC. The embedded steel tube had a significant influence on improving the original stiffness (K0), the stiffness at the working stage with cracks (K1), and the flexural capacity (Pu) of composite decks. The flexural failure of the hollow steel-UHPC composite deck was controlled by the tensile zone. Finally, a theoretical formula was proposed to predict the flexural capacity of the hollow steel-UHPC composite deck.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Mechanical behavior of natural bonding interface in hollow steel-UHPC composite bridge deck
    Zou, Yang
    Zhou, Heying
    Yang, Jun
    Zhang, Zhongya
    Zheng, Kaidi
    Jiang, Jinlong
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2023, 210
  • [2] Research on the shear performance of hollow steel-UHPC composite bridge decks
    Zou, Yang
    Chen, Lei
    Zhou, Heying
    Men, Pengfei
    Jiang, Jinlong
    Yang, Jun
    Zhang, Zhongya
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2025, 226
  • [3] Bending behavior of steel-UHPC composite bridge deck based on epoxy adhesive
    Li, Baojun
    Jiang, Jinlong
    Deng, Zhiheng
    Zhou, Heying
    Wang, Haicui
    Jiang, Haoting
    Cao, Yidong
    FRONTIERS IN MATERIALS, 2022, 9
  • [4] In Situ Experimental Study on the Behavior of UHPC Composite Orthotropic Steel Bridge Deck
    Su, Li
    Wang, Shilei
    Gao, Yan
    Liu, Jianlei
    Shao, Xudong
    MATERIALS, 2020, 13 (01)
  • [5] Shear behaviour of steel-UHPC composite beams in waffle bridge deck
    Zhu, Jin-Song
    Wang, Yong-Guang
    Yan, Jia-Bao
    Guo, Xiao-Yu
    COMPOSITE STRUCTURES, 2020, 234
  • [6] Experimental Investigation on Flexural Capacity of Steel-UHPC Continuous Composite Girder
    Wang H.-L.
    Sun T.
    Liu X.-Y.
    Tang C.
    Wang J.-J.
    Chen A.-J.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2021, 34 (08): : 218 - 233
  • [7] Flexural and shear behavior of steel-UHPC composite beams: a review
    Benedetty, Carlos Alberto
    dos Santos, Vinicius Brother
    Krahl, Pablo Augusto
    Rossi, Alexandre
    Silva, Flavio de Andrade
    Cardoso, Daniel Carlos Taissum
    Martins, Carlos Humberto
    ENGINEERING STRUCTURES, 2023, 293
  • [8] A Review on Behavior and Fatigue Performance of Orthotropic Steel-UHPC Composite Deck
    Zhu, Zhiwen
    Zhu, Ruixu
    Xiang, Ze
    BUILDINGS, 2023, 13 (08)
  • [9] Flexural behavior of steel-UHPC composite slabs with demountable shear connectors
    Guo J.
    Wang J.
    Gao X.
    Bian C.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2024, 56 (01): : 63 - 72
  • [10] Experimental Investigation of Flexural Behavior of Steel-UHPC Composite Beam with Waffle-Slab System
    Zhu, Jinsong
    Guo, Xiaoyu
    Kang, Jingfu
    Duan, Menghao
    Wang, Yongguang
    JOURNAL OF BRIDGE ENGINEERING, 2021, 26 (04)