Isotopisms of nilpotent Leibniz algebras and Lie racks

被引:2
作者
La Rosa, Gianmarco [1 ]
Mancini, Manuel [1 ,4 ]
Nagy, Gabor P. [2 ,3 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Palermo, Italy
[2] Budapest Univ Technol & Econ, Dept Algebra & Geometry, Budapest, Hungary
[3] Univ Szeged, Bolya Inst, Szeged, Hungary
[4] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
关键词
Coquecigrue problem; isotopism; Lie rack; Leibniz algebra; CLASSIFICATION; ALGORITHM;
D O I
10.1080/00927872.2024.2330686
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the isotopism classes of two-step nilpotent algebras. We show that every nilpotent Leibniz algebra g with dim[g,g]=1 is isotopic to the Heisenberg Lie algebra or to the Heisenberg algebra l2n+1J1 , where J1 is the n x n Jordan block of eigenvalue 1. We also prove that two such algebras are isotopic if and only if the Lie racks integrating them are isotopic. This gives the classification of Lie racks whose tangent space at the unit element is a nilpotent Leibniz algebra with one-dimensional commutator ideal. Eventually, we introduce new isotopism invariants for Leibniz algebras and Lie racks.
引用
收藏
页码:3812 / 3825
页数:14
相关论文
共 22 条
[1]   Quasigroups. I [J].
Albert, A. A. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 54 (1-3) :507-519
[2]   Non-associative algebras I. Fundamental concepts and isotopy [J].
Albert, AA .
ANNALS OF MATHEMATICS, 1942, 43 :685-707
[3]  
Ayupov S., 2019, Leibniz algebras: structure and classification
[4]  
Ayupov Sh.A., 1999, Uzbek. Mat. Zh., P9
[5]   SOLVABLE EXTENSIONS OF NILPOTENT COMPLEX LIE ALGEBRAS OF TYPE {2n, 1, 1} [J].
Bartolone, C. ;
Di Bartolo, A. ;
Falcone, G. .
MOSCOW MATHEMATICAL JOURNAL, 2018, 18 (04) :607-616
[6]   Nilpotent Lie algebras with 2-dimensional commutator ideals [J].
Bartolone, C. ;
Di Bartolo, A. ;
Falcone, G. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (03) :650-656
[7]  
BLOKH A, 1965, DOKL AKAD NAUK SSSR+, V165, P471
[8]   An algorithm for the classification of 3-dimensional complex Leibniz algebras [J].
Casas, J. M. ;
Insua, M. A. ;
Ladra, M. ;
Ladra, S. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) :3747-3756
[9]  
Covez S, 2013, ANN I FOURIER, V63, P1