Inequalities for the A-joint numerical radius of two operators and their applications

被引:1
|
作者
Feki, Kais [1 ,2 ]
机构
[1] Najran Univ, Coll Sci & Arts, Dept Math, Najran 66462, Saudi Arabia
[2] Univ Sfax, Fac Sci Sfax, Lab Phys Math & Applicat LR ES 22 13, Sfax, Tunisia
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2024年 / 53卷 / 01期
关键词
semi-inner product; positive operator; A-joint numerical radius; A-Davis-Wielandt radius; inequality; BOUNDS;
D O I
10.15672/hujms.1142554
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (3-C, (center dot, center dot)) be a complex Hilbert space and A be a positive (semidefinite) bounded linear operator on 3-C. The semi -inner product induced by A is given by (x, y)A := (Ax, y), x, y E 3-C and defines a seminorm II center dot IIA on 3-C. This makes 3-C into a semi -Hilbert space. The A -joint numerical radius of two A -bounded operators T and S is given by omega A,e(T, S) = sup IIxIIA=1 ✓⠌⠌(T x, x)A ⠌⠌2 + ⠌⠌(Sx, x)A ⠌⠌2. In this paper, we aim to prove several bounds involving omega A,e(T, S). This allows us to establish some inequalities for the A -numerical radius of A -bounded operators. In particular, we extend the well-known inequalities due to Kittaneh [Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (1), 73-80, 2005]. Moreover, several bounds related to the A-Davis-Wielandt radius of semi -Hilbert space operators are also provided.
引用
收藏
页码:22 / 39
页数:18
相关论文
共 50 条
  • [1] Inequalities and Reverse Inequalities for the Joint A-Numerical Radius of Operators
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    AXIOMS, 2023, 12 (03)
  • [2] On the Joint A-Numerical Radius of Operators and Related Inequalities
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    MATHEMATICS, 2023, 11 (10)
  • [3] Generalized A-Numerical Radius of Operators and Related Inequalities
    Bhunia, Pintu
    Feki, Kais
    Paul, Kallol
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (06) : 3883 - 3907
  • [4] Generalized A-Numerical Radius of Operators and Related Inequalities
    Pintu Bhunia
    Kais Feki
    Kallol Paul
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 3883 - 3907
  • [5] SomeA-numerical radius inequalities for semi-Hilbertian space operators
    Chandra Rout, Nirmal
    Sahoo, Satyajit
    Mishra, Debasisha
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) : 980 - 996
  • [6] Norm and numerical radius inequalities for sum of operators
    Vakili, Ali Zand
    Farokhinia, Ali
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (04): : 647 - 657
  • [7] NUMERICAL RADIUS INEQUALITIES FOR PRODUCTS AND COMMUTATORS OF OPERATORS
    Abu-Omar, Amer
    Kittaneh, Fuad
    HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (04): : 1163 - 1173
  • [8] Further Seminorm and Numerical Radius Inequalities for Products and Sums of Operators
    Conde, Cristian
    Feki, Kais
    Kittaneh, Fuad
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (11) : 1097 - 1118
  • [9] On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators
    Conde, Cristian
    Feki, Kais
    RICERCHE DI MATEMATICA, 2024, 73 (02) : 661 - 679
  • [10] ON INEQUALITIES FOR A-NUMERICAL RADIUS OF OPERATORS
    Bhunia, Pintu
    Paul, Kallol
    Nayak, Raj Kumar
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36