LEADER-FOLLOWING RENDEZVOUS CONTROL FOR GENERALIZED CUCKER-SMALE MODEL ON RIEMANNIAN MANIFOLDS

被引:3
|
作者
Li, Xiaoyu [1 ]
Wu, Yuhu [2 ]
Ru, Lining [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
[3] Suzhou Univ Sci & Technol, Sch Math Sci, Suzhou 215009, Peoples R China
基金
中国国家自然科学基金;
关键词
multiagent systems; Cucker--Smale model; Riemannian manifold; leader-following rendezvous; EMERGENT BEHAVIORS; STABILITY ANALYSIS; CONSENSUS; FLOCKING; SYSTEMS; ALGORITHMS; EXTENSION; DYNAMICS; AGENTS;
D O I
10.1137/23M1545811
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies a leader-following rendezvous problem for the generalized CuckerSmale model, a double -integrator multiagent system, on some Riemannian manifolds. By using intrinsic properties of the covariant derivative, logarithmic map, and parallel transport on the Riemannian manifolds, we design a feedback control law and prove that this feedback control law enables all followers to track the trajectory of the moving leader when the Riemannian manifold is compact or flat. As concrete examples, we consider the leader-following rendezvous problem on the unit sphere, in Euclidean space, on the unit circle, and infinite cylinder and present the corresponding feedback control laws. Meanwhile, numerical examples are given for the aforementioned Riemannian manifolds to illustrate and verify the theoretical results.
引用
收藏
页码:724 / 751
页数:28
相关论文
共 50 条
  • [21] Optimal consensus control of the Cucker-Smale model
    Bailo, Rafael
    Bongini, Mattia
    Carrillo, Jose A.
    Kalise, Dante
    IFAC PAPERSONLINE, 2018, 51 (13): : 1 - 6
  • [22] Model Predictive Flocking Control for the Cucker-Smale Multi-Agent Model
    Wu, Wei
    Liu, Bin
    Zhang, Hai-Tao
    2016 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2016,
  • [23] On the existence of optimal consensus control for the fractional Cucker-Smale model
    Almeida, R.
    Kamocki, R.
    Malinowska, A. B.
    Odzijewicz, T.
    ARCHIVES OF CONTROL SCIENCES, 2020, 30 (04) : 625 - 651
  • [24] Multi-cluster flocking behavior of the hierarchical Cucker-Smale model
    Ru, Lining
    Xue, Xiaoping
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (05): : 2371 - 2392
  • [25] On the Fractional Variable Order Cucker-Smale Type Model
    Girejko, Ewa
    Mozyrska, Dorota
    Wyrwas, Malgorzata
    IFAC PAPERSONLINE, 2018, 51 (04): : 693 - 697
  • [26] EMERGENCE OF ANOMALOUS FLOCKING IN THE FRACTIONAL CUCKER-SMALE MODEL
    Ha, Seung-yeal
    Jung, Jinwook
    Kuchling, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (09) : 5465 - 5489
  • [27] Robustness of Cucker-Smale flocking model
    Canale, Eduardo
    Dalmao, Federico
    Mordecki, Ernesto
    Souza, Max O.
    IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (03) : 346 - 350
  • [28] Cucker-Smale Flocking Control of Leader-Follower Multiagent Systems With Intermittent Communication
    Gao, Zhiyong
    Wang, Lukun
    Qiao, Shuhan
    IEEE ACCESS, 2019, 7 : 172676 - 172682
  • [29] CUCKER-SMALE MODEL WITH NORMALIZED COMMUNICATION WEIGHTS AND TIME DELAY
    Choi, Young-Pil
    Haskovec, Jan
    KINETIC AND RELATED MODELS, 2017, 10 (04) : 1011 - 1033
  • [30] A strong form of propagation of chaos for Cucker-Smale model
    Wu, Juntao
    Wang, Xiao
    Liu, Yicheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):