Stability Analysis of a New Fourth-Order Optimal Iterative Scheme for Nonlinear Equations

被引:3
作者
Cordero, Alicia [1 ]
Reyes, Jose A. [2 ]
Torregrosa, Juan R. [1 ]
Vassileva, Maria P. [2 ]
机构
[1] Univ Politecn Valencia UPV, Multidisciplinary Math Inst, Valencia 46022, Spain
[2] Inst Tecnol Santo Domingo INTEC, Dept Ciencias Basicas, Santo Domingo 10801, Dominican Rep
关键词
nonlinear equations; iterative methods; convergence order; stability; parameter plane; 6TH ORDER; CONVERGENCE; DYNAMICS; FAMILY;
D O I
10.3390/axioms13010034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new parametric class of optimal fourth-order iterative methods to estimate the solutions of nonlinear equations is presented. After the convergence analysis, a study of the stability of this class is made using the tools of complex discrete dynamics, allowing those elements of the class with lower dependence on initial estimations to be selected in order to find a very stable subfamily. Numerical tests indicate that the stable members perform better on quadratic polynomials than the unstable ones when applied to other non-polynomial functions. Moreover, the performance of the best elements of the family are compared with known methods, showing robust and stable behaviour.
引用
收藏
页数:24
相关论文
共 31 条
  • [1] Amat S, 2016, SEMA SIMAI SPRING S, V10, P1, DOI 10.1007/978-3-319-39228-8
  • [2] Amat S., 2004, SCI SER MATH SCI NS, V10, P3
  • [3] [Anonymous], 1919, Bull. Soc. Math. Fr.
  • [4] Argyros I.K., 2017, ITERATIVE METHODS TH
  • [5] Highly efficient family of iterative methods for solving nonlinear models
    Behl, Ramandeep
    Sarria, I.
    Gonzalez, R.
    Magrenan, A. A.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 346 : 110 - 132
  • [6] COMPLEX ANALYTIC DYNAMICS ON THE RIEMANN SPHERE
    BLANCHARD, P
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 11 (01) : 85 - 141
  • [7] Blanchard P., 1994, COMPLEX DYNAMICAL SY, V49, P139, DOI DOI 10.1090/PSAPM/049/1315536
  • [8] Application of Newton-Raphson Method for Computing the Final Air-Water Interface Location in a Pipe Water Filling
    Bonilla-Correa, Dalia M.
    Coronado-Hernandez, Oscar E.
    Fuertes-Miquel, Vicente S.
    Besharat, Mohsen
    Ramos, Helena M.
    [J]. WATER, 2023, 15 (07)
  • [9] A Family of Multiple-Root Finding Iterative Methods Based on Weight Functions
    Chicharro, Francisco, I
    Contreras, Rafael A.
    Garrido, Neus
    [J]. MATHEMATICS, 2020, 8 (12) : 1 - 17
  • [10] Drawing Dynamical and Parameters Planes of Iterative Families and Methods
    Chicharro, Francisco I.
    Cordero, Alicia
    Torregrosa, Juan R.
    [J]. SCIENTIFIC WORLD JOURNAL, 2013,