Structure and conductivity of ionomer in PEM fuel cell catalyst layers: a model-based analysis

被引:9
作者
Olbrich, W. [1 ,2 ,3 ]
Kadyk, T. [1 ,4 ]
Sauter, U. [2 ]
Eikerling, M. [1 ,3 ,4 ]
Gostick, J. [5 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res, Theory & Computat Energy Mat IEK 13, D-52425 Julich, Germany
[2] Robert Bosch GmbH, Corp Res, D-71272 Renningen, Germany
[3] Rhein Westfal TH Aachen, Fac Georesources & Mat Engn, Chair Theory & Computat Energy Mat, D-52062 Aachen, Germany
[4] Julich Aachen Res Alliance, JARA Energy, D-52425 Julich, Germany
[5] Univ Waterloo, Dept Chem Engn, Waterloo, ON, Canada
关键词
EFFECTIVE TRANSPORT-PROPERTIES; PROTON-CONDUCTIVITY; PERFORMANCE; MICROSTRUCTURE; RECONSTRUCTION; NAFION; OPTIMIZATION; SIMULATION; ELECTRODES; DIFFUSION;
D O I
10.1038/s41598-023-40637-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Efforts in design and optimization of catalyst layers for polymer electrolyte fuel cells hinge on mathematical models that link electrode composition and microstructure with effective physico-chemical properties. A pivotal property of these layers and the focus of this work is the proton conductivity, which is largely determined by the morphology of the ionomer. However, available relations between catalyst layer composition and proton conductivity are often adopted from general theories for random heterogeneous media and ignore specific features of the microstructure, e.g., agglomerates, film-like structures, or the hierarchical porous network. To establish a comprehensive understanding of the peculiar structure-property relations, we generated synthetic volumetric images of the catalyst layer microstructure. In a mesoscopic volume element, we modeled the electrolyte phase and calculated the proton conductivity using numerical tools. Varying the ionomer morphology in terms of ionomer film coverage and thickness revealed two limiting cases: the ionomer can either form a thin film with high coverage on the catalyst agglomerates; or the ionomer exists as voluminous chunks that connect across the inter-agglomerate space. Both cases were modeled analytically, adapting relations from percolation theory. Based on the simulated data, a novel relation is proposed, which links the catalyst layer microstructure to the proton conductivity over a wide range of morphologies. The presented analytical approach is a versatile tool for the interpretation of experimental trends and it provides valuable guidance for catalyst layer design. The proposed model was used to analyze the formation of the catalyst layer microstructure during the ink stage. A parameter study of the initial ionomer film thickness and the ionomer dispersion parameter revealed that the ionomer morphology should be tweaked towards well-defined films with high coverage of catalyst agglomerates. These implications match current efforts in the experimental literature and they may thus provide direction in electrode materials research for polymer electrolyte fuel cells.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Effect of ionomer dispersions on the performance of catalyst layers in proton exchange membrane fuel cells
    Park, Jong-Hyeok
    Kim, Beom-Seok
    Park, Jin-Soo
    ELECTROCHIMICA ACTA, 2022, 424
  • [42] Impact of ionomer in the catalyst layers on proton exchange membrane fuel cell performance under different reactant flows and pressures
    Shahgaldi, Samaneh
    Alaefour, Ibrahim
    Zhao, Jian
    Li, Xianguo
    FUEL, 2018, 227 : 35 - 41
  • [43] Modeling, Design and Fabrication of Non-uniform Catalyst layers for PEM fuel cells
    Roshandel, R.
    PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 1, 2010, : 697 - 705
  • [44] The Formation-Structure-Functionality Relationship of Catalyst Layers in Proton Exchange Membrane Fuel Cells
    Yang, Donglei
    Kakati, Nitul
    Sarker, Mrittunjoy
    Mojica, Felipe
    Chuang, Po-Ya Abel
    ENERGIES, 2024, 17 (09)
  • [45] Challenges of fabricating catalyst layers for PEM fuel cells using flatbed screen printing
    Ney, Linda
    Hog, Jakob
    Singh, Rajveer
    Goettlicher, Nathalie
    Schneider, Patrick
    Tepner, Sebastian
    Klingele, Matthias
    Keding, Roman
    Clement, Florian
    Groos, Ulf
    JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2023, 20 (01) : 73 - 86
  • [46] Model-Based Ex Situ Diagnostics of Water Fluxes in Catalyst Layers of Polymer Electrolyte Fuel Cells
    Liu, J.
    Gazzarri, J.
    Eikerling, M.
    FUEL CELLS, 2013, 13 (02) : 134 - 142
  • [47] Corrosion-Induced Microstructural Variability Affects Transport-Kinetics Interaction in PEM Fuel Cell Catalyst Layers
    Goswami, Navneet
    Mistry, Aashutosh N.
    Grunewald, Jonathan B.
    Fuller, Thomas F.
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (08)
  • [48] Gas transport inside and outside carbon supports of catalyst layers for PEM fuel cells
    Iden, Hiroshi
    Mashio, Tetsuya
    Ohma, Atsushi
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 708 : 87 - 94
  • [49] Ionomer degradation in catalyst layers of anion exchange membrane fuel cells
    Li, Qihao
    Hu, Meixue
    Ge, Chuangxin
    Yang, Yao
    Xiao, Li
    Zhuang, Lin
    Abruna, Hector D.
    CHEMICAL SCIENCE, 2023, 14 (38) : 10429 - 10434
  • [50] A multiscale model for proton exchange membrane fuel cells with order-structured catalyst layers
    Lin, P. Z.
    Sun, J.
    Wu, M. C.
    Zhao, T. S.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 195