Improved Ship Detection with YOLOv8 Enhanced with MobileViT and GSConv

被引:23
|
作者
Zhao, Xuemeng [1 ]
Song, Yinglei [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212003, Peoples R China
关键词
ship detection; object detection; YOLOv8; MobileViT; GSConv;
D O I
10.3390/electronics12224666
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In tasks that require ship detection and recognition, the irregular shapes of ships and complex backgrounds pose significant challenges. This paper presents an advanced extension of the YOLOv8 model to address these challenges. A lightweight visual transformer, MobileViTSF, is proposed and combined with the YOLOv8 model. To address the loss of semantic information that arises from inconsistent scales in the detection of small ships, a layer intended for the detection of small targets is introduced to lead to improved fusion of deep and shallow features. Furthermore, the traditional convolution (Conv) blocks are replaced with GSConv blocks, and a novel GSC2f block is designed for fewer model parameters and improved detection performance. Experiments on a benchmark dataset suggest that this new model can achieve significantly improved accuracy for ship detection with fewer model parameters and a reduced model size. A comparison with several other state-of-the-art methods shows that higher accuracy can be obtained for ship detection with this model. Moreover, this new model is suitable for edge computing devices, demonstrating practical application value.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Improved YOLOv8 Model for a Comprehensive Approach to Object Detection and Distance Estimation
    Khow, Zu Jun
    Tan, Yi-Fei
    Karim, Hezerul Abdul
    Rashid, Hairul Azhar Abdul
    IEEE ACCESS, 2024, 12 : 63754 - 63767
  • [32] Small Object Detection Algorithm Based on Improved YOLOv8 for Remote Sensing
    Yi, Hao
    Liu, Bo
    Zhao, Bin
    Liu, Enhai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1734 - 1747
  • [33] Fish Catch Sorting and Detection Model Improved Based on YOLOv8 Model
    Yang, Ping
    Shi, Tiange
    Yuan, Youdong
    Jiang, Hanbing
    INFORMATION TECHNOLOGY AND CONTROL, 2024, 53 (04):
  • [34] Lightweight rail surface defect detection algorithm based on an improved YOLOv8
    Xu, CanYang
    Liao, Yingying
    Liu, Yongqiang
    Tian, Runliang
    Guo, Tao
    MEASUREMENT, 2025, 242
  • [35] Small-Target Detection Based on Improved YOLOv8 for Infrared Imagery
    Wang, Huicong
    Ma, Kaijun
    Yue, Juan
    Li, Yuhan
    Huang, Jiaxin
    Liu, Jie
    Li, Linhan
    Wang, Xiaoyu
    Cai, Nengbin
    Gao, Sili
    ELECTRONICS, 2025, 14 (05):
  • [36] Enhanced Small Drone Detection Using Optimized YOLOv8 With Attention Mechanisms
    Zamri, Fatin Najihah Muhamad
    Gunawan, Teddy Surya
    Yusoff, Siti Hajar
    Alzahrani, Ahmad A.
    Bramantoro, Arif
    Kartiwi, Mira
    IEEE ACCESS, 2024, 12 : 90629 - 90643
  • [37] RCT-YOLOv8: A Tuna Detection Model for Distant-Water Fisheries Based on Improved YOLOv8
    Zhou, Qingyi
    Liu, Yuqing
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2024, 28 (06) : 1273 - 1283
  • [38] DPH-YOLOv8: Improved YOLOv8 Based on Double Prediction Heads for the UAV Image Object Detection
    Wang, Jian
    Li, Xinqi
    Chen, Jiafu
    Zhou, Lihui
    Guo, Linyang
    He, Zihao
    Zhou, Hao
    Zhang, Zechen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [39] Improved YOLOv5 Based on the Mobilevit Backbone for the Detection of Steel Surface Defects Improved YOLOv5 based on the mobilevit backbone and BiFPN
    Qiu, Kun
    Wang, Changkun
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 305 - 309
  • [40] Lightweight YOLOv8 for Wheat Head Detection
    Fang, Chen
    Yang, Xiang
    IEEE ACCESS, 2024, 12 : 66214 - 66222