Representation and Stability of General Nonic Functional Equation

被引:4
作者
Chang, Ick-Soon [1 ]
Lee, Yang-Hi [2 ]
Roh, Jaiok [3 ]
机构
[1] Chungnam Natl Univ, Dept Math, Daejeon 34134, South Korea
[2] Gongju Natl Univ Educ, Dept Math Educ, Gongju 32553, South Korea
[3] Hallym Univ, Ilsong Liberal Art Sch Math, Chunchon 24252, South Korea
关键词
stability; hyperstability; general nonic functional equation; ULAM-RASSIAS STABILITY; HYPERSTABILITY;
D O I
10.3390/math11143173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a way of representing a given mapping as the sum of odd and even mappings. Then, using this representation, we investigate the stability of various forms of the following general nonic functional equation: n-ary sumation i=01010Ci(-1)10-if(x+iy)=0.
引用
收藏
页数:19
相关论文
共 49 条
[1]   Ulam Stability of a General Linear Functional Equation in Modular Spaces [J].
Aboutaib, Issam ;
Benzarouala, Chaimaa ;
Brzdek, Janusz ;
Lesniak, Zbigniew ;
Oubbi, Lahbib .
SYMMETRY-BASEL, 2022, 14 (11)
[2]  
[Anonymous], 2014, JSRR, DOI DOI 10.9734/JSRR/2014/12852
[3]   On Stability of a General n-Linear Functional Equation [J].
Bahyrycz, Anna ;
Sikorska, Justyna .
SYMMETRY-BASEL, 2023, 15 (01)
[4]   Hyperstability of Some Functional Equations on Restricted Domain [J].
Bahyrycz, Anna ;
Olko, Jolanta .
JOURNAL OF FUNCTION SPACES, 2017, 2017
[5]   Hyperstability of general linear functional equation [J].
Bahyrycz, Anna ;
Olko, Jolanta .
AEQUATIONES MATHEMATICAE, 2016, 90 (03) :527-540
[6]   On stability of the general linear equation [J].
Bahyrycz, Anna ;
Olko, Jolanta .
AEQUATIONES MATHEMATICAE, 2015, 89 (06) :1461-1474
[7]   A general functional equation and its stability [J].
Baker, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) :1657-1664
[8]   THE STABILITY OF CERTAIN FUNCTIONAL-EQUATIONS [J].
BAKER, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (03) :729-732
[9]  
BAKER JA, 1980, P AM MATH SOC, V80, P411, DOI 10.2307/2043730
[10]   A fixed point theorem and Ulam stability of a general linear functional equation in random normed spaces [J].
Benzarouala, Chaimaa ;
Brzdek, Janusz ;
Oubbi, Lahbib .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (01)