Application of Machine Learning in Predicting Hepatic Metastasis or Primary Site in Gastroenteropancreatic Neuroendocrine Tumors

被引:2
作者
Padwal, Mahesh Kumar [1 ,2 ]
Basu, Sandip [2 ,3 ]
Basu, Bhakti [1 ,2 ]
机构
[1] Bhabha Atom Res Ctr, Mol Biol Div, Mumbai 400085, India
[2] Homi Bhabha Natl Inst, Mumbai 400094, India
[3] Bhabha Atom Res Ctr, Tata Mem Hosp Annexe, Radiat Med Ctr, Mumbai 400012, India
关键词
machine learning; gene features; RNA-SEQ; neuroendocrine tumors; hepatic metastasis; primary site; random forest; RNA-SEQ; BREAST-CANCER; SFRP2; GENE; PROGNOSIS; CELL; EXPRESSION; PROGRESSION; SIGNATURES; DIAGNOSIS; PROMOTER;
D O I
10.3390/curroncol30100668
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) account for 80% of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). GEP-NETs are well-differentiated tumors, highly heterogeneous in biology and origin, and are often diagnosed at the metastatic stage. Diagnosis is commonly through clinical symptoms, histopathology, and PET-CT imaging, while molecular markers for metastasis and the primary site are unknown. Here, we report the identification of multi-gene signatures for hepatic metastasis and primary sites through analyses on RNA-SEQ datasets of pancreatic and small intestinal NETs tissue samples. Relevant gene features, identified from the normalized RNA-SEQ data using the mRMRe algorithm, were used to develop seven Machine Learning models (LDA, RF, CART, k-NN, SVM, XGBOOST, GBM). Two multi-gene random forest (RF) models classified primary and metastatic samples with 100% accuracy in training and test cohorts and >90% accuracy in an independent validation cohort. Similarly, three multi-gene RF models identified the pancreas or small intestine as the primary site with 100% accuracy in training and test cohorts, and >95% accuracy in an independent cohort. Multi-label models for concurrent prediction of hepatic metastasis and primary site returned >98.42% and >87.42% accuracies on training and test cohorts, respectively. A robust molecular signature to predict liver metastasis or the primary site for GEP-NETs is reported for the first time and could complement the clinical management of GEP-NETs.
引用
收藏
页码:9244 / 9261
页数:18
相关论文
共 50 条
[31]   Genetic heterogeneity of primary lesion and metastasis in small intestine neuroendocrine tumors [J].
Walter, Dirk ;
Harter, Patrick N. ;
Battke, Florian ;
Winkelmann, Ria ;
Schneider, Markus ;
Holzer, Katharina ;
Koch, Christine ;
Bojunga, Joerg ;
Zeuzem, Stefan ;
Hansmann, Martin Leo ;
Peveling-Oberhag, Jan ;
Waidmann, Oliver .
SCIENTIFIC REPORTS, 2018, 8
[32]   The effect of primary site, functional status and treatment modality on survival in gastroenteropancreatic neuroendocrine neoplasms with synchronous liver metastasis: a US population-based study [J].
Pu, Ning ;
Habib, Joseph R. ;
Bejjani, Michael ;
Yin, Hanlin ;
Nagai, Minako ;
Chen, Jianan ;
Kinny-Koster, Benedict ;
Chen, Qiangda ;
Zhang, Jicheng ;
Yu, Jun ;
Wu, Wenchuan ;
Lou, Wenhui .
ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (04)
[33]   Predicting Site Energy Usage Intensity Using Machine Learning Models [J].
Njimbouom, Soualihou Ngnamsie ;
Lee, Kwonwoo ;
Lee, Hyun ;
Kim, Jeongdong .
SENSORS, 2023, 23 (01)
[34]   Impact of the tumor microenvironment in predicting postoperative hepatic recurrence of pancreatic neuroendocrine tumors [J].
Sato, Shoki ;
Tsuchikawa, Takahiro ;
Nakamura, Toru ;
Sato, Nagato ;
Tamoto, Eiji ;
Okamura, Keisuke ;
Shichinohe, Toshiaki ;
Hirano, Satoshi .
ONCOLOGY REPORTS, 2014, 32 (06) :2753-2759
[35]   Application of Machine Learning Algorithm in Predicting Axillary Lymph Node Metastasis from Breast Cancer on Preoperative Chest CT [J].
Park, Soyoung ;
Kim, Jong Hee ;
Cha, Yoon Ki ;
Chung, Myung Jin ;
Woo, Jung Han ;
Park, Subin .
DIAGNOSTICS, 2023, 13 (18)
[36]   Identification of metastasis-related genes for predicting prostate cancer diagnosis, metastasis and immunotherapy drug candidates using machine learning approaches [J].
Wang, YaXuan ;
Ji, Bo ;
Zhang, Lu ;
Wang, Jinfeng ;
He, JiaXin ;
Ding, BeiChen ;
Ren, MingHua .
BIOLOGY DIRECT, 2024, 19 (01)
[37]   Impact of primary tumor resection and metastasectomy among gastroenteropancreatic neuroendocrine tumors with liver metastases only on survival [J].
Chen, Q. ;
Li, K. ;
Rhodin, K. E. ;
Bartholomew, A. J. ;
Lidsky, M. E. ;
Wei, Q. ;
Cai, J. ;
Luo, S. ;
Zhao, H. .
JOURNAL OF NEUROENDOCRINOLOGY, 2023, 35 :69-69
[38]   Application of CT-Based Radiomics in Discriminating Pancreatic Cystadenomas From Pancreatic Neuroendocrine Tumors Using Machine Learning Methods [J].
Han, Xuejiao ;
Yang, Jing ;
Luo, Jingwen ;
Chen, Pengan ;
Zhang, Zilong ;
Alu, Aqu ;
Xiao, Yinan ;
Ma, Xuelei .
FRONTIERS IN ONCOLOGY, 2021, 11
[39]   A practical method to determine the site of unknown primary in metastatic neuroendocrine tumors [J].
Maxwell, Jessica E. ;
Sherman, Scott K. ;
Stashek, Kristen M. ;
O'Dorisio, Thomas M. ;
Bellizzi, Andrew M. ;
Howe, James R. .
SURGERY, 2014, 156 (06) :1359-1366
[40]   Neuroendocrine tumors of unknown primary site: gold dust or misdiagnosed neoplasms? [J].
Catena, Laura ;
Bichisao, Ettore ;
Milione, Massimo ;
Valente, Monica ;
Platania, Marco ;
Pusceddu, Sara ;
Ducceschi, Monika ;
Zilembo, Nicoletta ;
Formisano, Barbara ;
Bajetta, Emilio .
TUMORI JOURNAL, 2011, 97 (05) :564-567