Online Determination on the Properties of Naphtha as the Ethylene Feedstock Using Near-Infrared Spectroscopy

被引:0
作者
Fan, Chen [1 ]
Liu, Tianbo [2 ]
Hu, Guihua [1 ]
Yang, Minglei [1 ]
Long, Jian [1 ,3 ]
机构
[1] East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
[2] Sinopec Jinan Co, Jinan 250102, Peoples R China
[3] Qingyuan Innovat Lab, Quanzhou 362801, Peoples R China
基金
中国国家自然科学基金;
关键词
near-infrared spectroscopy; naphtha properties; pre-processing; partial least squares; online determination; OIL; PRECIPITATION; FRACTIONS; GASOLINE;
D O I
10.1134/S0965544123060208
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Providing real-time information on the properties of naphtha as the ethylene feedstock within the minimal time is significant for improvement of the process simulation, control, and real-time optimization. To develop models predicting naphtha properties for different pre-processing methods, an online full transmittance near-infrared (NIR) spectrum measurement system has been used along with the principal component regression and partial least squares (PLS) methods. The results show that the Savitzky-Golay smoothing combined with the first-derivative pre-processing provides the best denoising effect compared to other methods. The predicted relative errors of the NIR models developed by PLS, especially for the cutting temperature points of the test set, basically make 1-5% indicating it can be used to create good NIR prediction models for the on-line determination of naphtha properties.
引用
收藏
页码:1069 / 1079
页数:11
相关论文
共 23 条
[1]   Asphaltenes Precipitation Onset: Influence of the Addition of a Second Crude Oil or Its Asphaltenes Fractions (C3I and C5I) [J].
Barreira, Fabio R. ;
Reis, Leidiane G. ;
Nunes, Rita de Cassia P. ;
Filipakis, Sofia D. ;
Lucas, Elizabete F. .
ENERGY & FUELS, 2018, 32 (10) :10391-10397
[2]   Recursive Wavelength-Selection Strategy to Update Near-Infrared Spectroscopy Model with an Industrial Application [J].
Chen, Mulang ;
Khare, Swanand ;
Huang, Biao ;
Zhang, Haitao ;
Lau, Eric ;
Feng, Enbo .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (23) :7886-7895
[3]   Prediction of Gasoline Blend Ignition Characteristics Using Machine Learning Models [J].
Gonzalez, Sandra Correa ;
Kroyan, Yuri ;
Sarjovaara, Teemu ;
Kiiski, Ulla ;
Karvo, Anna ;
Toldy, Arpad, I ;
Larmi, Martti ;
Santasalo-Aarnio, Annukka .
ENERGY & FUELS, 2021, 35 (11) :9332-9340
[4]   Improving the Operational Efficiency of Ethylene Cracking Integrated with Refining by Molecular Management [J].
Gu, Hengchang ;
Li, Jianwei ;
Mu, Peng ;
Zhu, Qunxiong .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (29) :13160-13174
[5]   Fourier Transform Near-Infrared (FTNIR) Spectroscopy and Partial Least-Squares (PLS) Algorithm for Monitoring Compositional Changes in Hydrocarbon Gases under In Situ Pressure [J].
Haghi, Reza K. ;
Yang, Jinhai ;
Tohidi, Bahman .
ENERGY & FUELS, 2017, 31 (09) :10245-10259
[6]   Biased Minimax Probability Machine-Based Adaptive Regression for Online Analysis of Gasoline Property [J].
He, Kaixun ;
Zhong, Maiying ;
Fang, Jingzhong ;
Li, Yiran .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (04) :2799-2808
[7]  
HOSANI EA, 2014, IEEE T INSTRUM MEAS, V63, P2238
[8]   Online detection of soluble solids content and maturity of tomatoes using Vis/NIR full transmittance spectra [J].
Huang, Yifeng ;
Dong, Wentao ;
Chen, Ying ;
Wang, Xiaoming ;
Zhan, Baishao ;
Liu, Xuemei ;
Zhang, Hailiang .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2021, 210
[9]   Asphaltene precipitation from live crude oil [J].
Joshi, NB ;
Mullins, OC ;
Jamaluddin, A ;
Creek, J ;
McFadden, J .
ENERGY & FUELS, 2001, 15 (04) :979-986
[10]   Structural-Dynamic Phase Transitions in Petroleum Disperse Systems [J].
Kashaev, R. S. .
PETROLEUM CHEMISTRY, 2019, 59 (02) :143-150