Recent advancement in surface modification of aramid fiber assisted by supercritical carbon dioxide

被引:6
作者
Patadiya, Jigar [1 ,2 ]
Chougale, Prajakta Vilas [3 ]
Naebe, Minoo [1 ]
Kandasubramanian, Balasubramanian [2 ,4 ]
Mahajan-Tatpate, Pallavi [3 ]
机构
[1] Deakin Univ, Inst Frontier Mat, Waurn Ponds Campus, Geelong, Vic, Australia
[2] Def Inst Adv Technol DU, Dept Met & Mat Engn, Pune, Maharashtra, India
[3] Dr Vishwanath Karad MIT World Peace Univ, Sch Polymer Engn, Pune, Maharashtra, India
[4] Def Inst Adv Technol DU, Dept Met & Mat Engineering, Pune 411025, Maharashtra, India
关键词
aramid fiber; grafting; Kevlar fiber; supercritical carbon dioxide (scCO(2)); surface modification; ENHANCED INTERFACIAL STRENGTH; FLUID EXTRACTION; COMPOSITES; ADHESION; PHASE; CO2;
D O I
10.1002/pat.6163
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The exceptional mechanical properties of aramid fibers make them a popular choice for high-performance materials; despite that, their potential is limited due to their surface properties bonding energy and interfacial bonding strength with matrix materials. The enhanced resistance of poly-aramid fibers (AFs) to severe surroundings and improved interlaminar adhesion in sandwich compounds with admirable mechanical characteristics are becoming a great challenge for various chemical and physical surface treatment techniques. Supercritical carbon dioxide (scCO(2)) is a popular and sustainable approach that can effectively bond and homogeneously deposit functional groups or nanoparticles and exhibit the excellent performance of fibber modification. This article examines aramid fibers' surface modification advancements using scCO(2)-assisted techniques, including monomer grafting, impregnation, and functionalization with various functional groups and nanoparticles. Additionally, the article discusses the challenges faced in scCO(2)-assisted aramid fiber modification and what the future holds for this technology.
引用
收藏
页码:3748 / 3758
页数:11
相关论文
共 72 条
[1]  
Al-Samarai RA., 2020, METAL OXIDE POWDER T, P83, DOI [DOI 10.1016/B978-0-12-817505-7.00005-1, DOI 10.1016/B978]
[2]   A compendious review on fatigue properties of the bio-nanocomposites [J].
Aravind, Dhandapani ;
Senthilkumar, Krishnasamy ;
Chandrasekar, Muthukumar ;
Kumar, Thiagamani Senthil Muthu ;
Ganesan, C. ;
Parameswaranpillai, Jyotishkumar ;
Rajini, Nagarajan ;
Siengchin, Suchart ;
Varagunapandiyan, Natarajan .
POLYMER COMPOSITES, 2022, 43 (10) :6803-6816
[3]  
Basheer Bashida V., 2020, Nano-Structures & Nano-Objects, V22, P150, DOI [10.1016/j.nanoso.2020.100429, 10.1016/j.nanoso.2020.100429]
[4]  
Belmas M, 2010, SEN-I GAKKAISHI, V66, P229
[5]   Structure-Mechanical Property Relations of Skin-Core Regions of Poly(p-phenylene terephthalamide) Single Fiber [J].
Chabi, Sakineh ;
Dikin, Dmitriy A. ;
Yin, Jie ;
Percec, Simona ;
Ren, Fei .
SCIENTIFIC REPORTS, 2019, 9 (1)
[6]   Surface-oriented fluorinated pyridinium silicone with enhanced antibacterial activity on cotton via supercritical impregnation [J].
Chen, Yong ;
Zhang, Qiang ;
Ma, Yijia ;
Han, Qiuxia .
CELLULOSE, 2018, 25 (02) :1499-1511
[7]  
Chittimenu H., 2021, MECH DYN PROP BIOCOM, P293, DOI [10.1002/9783527822331.ch16, DOI 10.1002/9783527822331.CH16]
[8]   Encapsulation of anthocyanin-rich extract from blackberry residues by spray-drying, freeze-drying and supercritical antisolvent [J].
da Fonseca Machado, Ana Paula ;
Rezende, Camila Alves ;
Rodrigues, Rodney Alexandre ;
Fernandez Barbero, Gerardo ;
Vieira e Rosa, Paulo de Tarso ;
Martinez, Julian .
POWDER TECHNOLOGY, 2018, 340 :553-562
[9]   Improving aramid pulp dispersion in epoxy resin via the in situ preparation of SiO2 on an aramid pulp surface [J].
Ding, Haiquan ;
Kong, Haijuan ;
Sun, Hui ;
Xu, Qian ;
Zeng, Juan ;
Yu, Muhuo .
POLYMER COMPOSITES, 2020, 41 (04) :1683-1693
[10]   Surface modification of an aramid fiber via grafting epichlorohydrin assisted by supercritical CO2 [J].
Ding, Xiaoma ;
Kong, Haijuan ;
Qiao, Mengmeng ;
Zhang, Luwei ;
Yu, Muhuo .
RSC ADVANCES, 2019, 9 (53) :31062-31069