Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades-A Review

被引:17
作者
Delaney, Emma L. [1 ,2 ]
Leahy, Paul G. [3 ]
Mckinley, Jennifer M. [1 ]
Gentry, T. Russell [4 ]
Nagle, Angela J. [3 ,5 ]
Elberling, Jeffrey [6 ]
Bank, Lawrence C. [4 ]
机构
[1] Queens Univ Belfast, Geog Sch Nat & Built Environm, Belfast BT7 1NN, North Ireland
[2] Old Acad Business Ctr, Aquatera Ltd, Stromness KW16 3AW, Orkney, Scotland
[3] Univ Coll Cork, Sch Engn & Architecture, Cork T12 K8AF, Ireland
[4] Georgia Inst Technol, Sch Architecture, Atlanta, GA 30332 USA
[5] Munster Technol Univ Campus, Rubicon Ctr, BladeBridge, Cork T12P928, Ireland
[6] Siemens Gamesa Renewable Energy Inc, 4400 Alafaya Trail Q2, Orlando, FL 32816 USA
关键词
end-of-life; wind turbine blades; uncertainties; blade waste forecast; recycling; FIBER-REINFORCED POLYMERS; WASTE; PERFORMANCE; COMPOSITES; EXTENSION; CONCRETE; ENERGY; REUSE; SPAIN;
D O I
10.3390/su151612557
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, the sustainability of wind power has been called into question because there are currently no truly sustainable solutions to the problem of how to deal with the non-biodegradable fibre-reinforced polymer (FRP) composite wind blades (sometimes referred to as "wings") that capture the wind energy. The vast majority of wind blades that have reached their end-of-life (EOL) currently end up in landfills (either in full-sized pieces or pulverized into smaller pieces) or are incinerated. The problem has come to a head in recent years since many countries (especially in the EU) have outlawed, or expect to outlaw in the near future, one or both of these unsustainable and polluting disposal methods. An increasing number of studies have addressed the issue of EOL blade "waste"; however, these studies are generally of little use since they make predictions that do not account for the manner in which wind blades are decommissioned (from the time the decision is made to retire a turbine (or a wind farm) to the eventual disposal or recycling of all of its components). This review attempts to lay the groundwork for a better understanding of the decommissioning process by defining how the different EOL solutions to the problem of the blade "waste" do or do not lead to "sustainable decommissioning". The hope is that by better defining the different EOL solutions and their decommissioning pathways, a more rigorous research base for future studies of the wind blade EOL problem will be possible. This paper reviews the prior studies on wind blade EOL and divides them into a number of categories depending on the focus that the original authors chose for their EOL assessment. This paper also reviews the different methods chosen by researchers to predict the quantities of future blade waste and shows that depending on the choice of method, predictions can be different by orders of magnitude, which is not good as this can be exploited by unscrupulous parties. The paper then reviews what different researchers define as the "recycling" of wind blades and shows that depending on the definition, the percentage of how much material is actually recycled is vastly different, which is also not good and can be exploited by unscrupulous parties. Finally, using very recent proprietary data (December 2022), the paper illustrates how the different definitions and methods affect predictions on global EOL quantities and recycling rates.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Methodological Approaches to End-Of-Life Modelling in Life Cycle Assessments of Lithium-Ion Batteries
    Nordelof, Anders
    Poulikidou, Sofia
    Chordia, Mudit
    de Oliveira, Felipe Bitencourt
    Tivander, Johan
    Arvidsson, Rickard
    BATTERIES-BASEL, 2019, 5 (03):
  • [42] Critical Factors for the Recycling of Different End-of-Life Materials: Wood Wastes, Automotive Shredded Residues, and Dismantled Wind Turbine Blades
    Castaldo, Rachele
    De Falco, Francesca
    Avolio, Roberto
    Bossanne, Emilie
    Fernandes, Felipe Cicaroni
    Cocca, Mariacristina
    Di Pace, Emilia
    Errico, Maria Emanuela
    Gentile, Gennaro
    Jasinski, Dominik
    Spinelli, Daniele
    Urios, Sonia Albein
    Vilkki, Markku
    Avella, Maurizio
    POLYMERS, 2019, 11 (10)
  • [43] End-of-life options of tyres. A review
    Valentini, Francesco
    Pegoretti, Alessandro
    ADVANCED INDUSTRIAL AND ENGINEERING POLYMER RESEARCH, 2022, 5 (04) : 203 - 213
  • [44] A mini-review of end-of-life management of wind turbines: Current practices and closing the circular economy gap
    Woo, Su Mei
    Whale, Jonathan
    WASTE MANAGEMENT & RESEARCH, 2022, 40 (12) : 1730 - 1744
  • [45] A review on rain erosion protection of wind turbine blades
    Chen, Junlei
    Wang, Jihui
    Ni, Aiqing
    JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2019, 16 (01): : 15 - 24
  • [46] Transdisciplinary End-of-Life Analysis of Wind Turbines
    Harder P.
    Dreßler D.
    Böning C.
    Stonis M.
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2022, 117 (1-2): : 41 - 45
  • [47] Bayesian Estimation of Remaining Useful Life for Wind Turbine Blades
    Nielsen, Jannie S.
    Sorensen, John D.
    ENERGIES, 2017, 10 (05):
  • [48] Stiffness assessment of the laminate recovered from end-of-life wind turbine blade
    Pyrzowski, L.
    Sabik, A.
    Kluska, J.
    Zembrzuski, J.
    COMPOSITE STRUCTURES, 2024, 348
  • [49] A REVIEW OF END-OF-LIFE DECISION MAKING FOR OFFSHORE WIND TURBINES
    Boyd, David
    Karimirad, Madjid
    Sivakumar, Vinayagamoothy
    Jalilvand, Soroosh
    Desmond, Cian
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 8, 2022,
  • [50] Recycling and recovery of fiber-reinforced polymer composites for end-of-life wind turbine blade management
    Shen, Yafei
    Apraku, Sarkodie Emmanuel
    Zhu, Yupeng
    GREEN CHEMISTRY, 2023, 25 (23) : 9644 - 9658