Real-Time Defect Detection Scheme Based on Deep Learning for Laser Welding System

被引:7
|
作者
Peng, Peng [1 ]
Fan, Kui [1 ]
Fan, Xueqiang [1 ]
Zhou, Hongping [1 ]
Guo, Zhongyi [1 ]
机构
[1] Hefei Univ Technol, Sch Comp & Informat, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Attention mechanism (AM); data enhancement; defect detection; integrated learning; laser welding;
D O I
10.1109/JSEN.2023.3277732
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Laser welding, as an important material processing technology, has been widely used in various fields of industry. In most industrial welding production and processing, high precision is required for welding parameters and fixed work pieces. However, in the process of laser welding, serious heat transfer effect will bring unpredictable welding deviations, and even a small deviation will lead to serious welding defects, which will affect the quality of the welded products. Traditional nondestructive testing methods have been widely used, but they have been proved to have some limitations. Existing laser welding defect detection schemes are mainly focused on the detection of postweld defects, which requires a large amount of data, and the real-time detection cannot be guaranteed. In this article, we propose a data acquisition system for collecting changes in physical characteristics during laser welding with the aids of multiple sensors. Based on the data originating from sensors' system, an efficient laser welding defect detection model has been designed and investigated based on the multiscale convolutional neural network (MSCNN), bidirectional long short-term memory (BiLSTM), and attention mechanism (AM). The final proposed MSCNN-BiLSTM-AM fusion detection model can achieve 99.38% detection accuracy, which make the laser welding system more efficient and more suitable.
引用
收藏
页码:17301 / 17309
页数:9
相关论文
共 50 条
  • [1] Real-time defect detection network for polarizer based on deep learning
    Liu, Ruizhen
    Sun, Zhiyi
    Wang, Anhong
    Yang, Kai
    Wang, Yin
    Sun, Qianlai
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (08) : 1813 - 1823
  • [2] Real-time defect detection network for polarizer based on deep learning
    Ruizhen Liu
    Zhiyi Sun
    Anhong Wang
    Kai Yang
    Yin Wang
    Qianlai Sun
    Journal of Intelligent Manufacturing, 2020, 31 : 1813 - 1823
  • [3] Real-Time Tiny Part Defect Detection System in Manufacturing Using Deep Learning
    Yang, Jing
    Li, Shaobo
    Wang, Zheng
    Yang, Guanci
    IEEE ACCESS, 2019, 7 : 89278 - 89291
  • [4] Explainable deep learning method for laser welding defect detection
    Liu T.
    Zheng H.
    Yang C.
    Bao J.
    Wang J.
    Gu J.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2022, 43 (04):
  • [5] A Real-Time Automated Defect Detection System for Ceramic Pieces Manufacturing Process Based on Computer Vision with Deep Learning
    Cumbajin, Esteban
    Rodrigues, Nuno
    Costa, Paulo
    Miragaia, Rolando
    Frazao, Luis
    Costa, Nuno
    Fernandez-Caballero, Antonio
    Carneiro, Jorge
    Buruberri, Leire H.
    Pereira, Antonio
    SENSORS, 2024, 24 (01)
  • [6] Efficient real-time defect detection for spillway tunnel using deep learning
    Chuncheng Feng
    Hua Zhang
    Yonglong Li
    Shuang Wang
    Haoran Wang
    Journal of Real-Time Image Processing, 2021, 18 : 2377 - 2387
  • [7] Efficient real-time defect detection for spillway tunnel using deep learning
    Feng, Chuncheng
    Zhang, Hua
    Li, Yonglong
    Wang, Shuang
    Wang, Haoran
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2021, 18 (06) : 2377 - 2387
  • [8] Research on Real-Time Detection System of Rail Surface Defects Based on Deep Learning
    Wang, Yaodong
    Yu, Hang
    Guo, Baoqing
    Shi, Hongmei
    Yu, Zujun
    IEEE SENSORS JOURNAL, 2024, 24 (13) : 21157 - 21167
  • [9] Real-Time Defect Detection in Electronic Components during Assembly through Deep Learning
    Weiss, Eyal
    Caplan, Shir
    Horn, Kobi
    Sharabi, Moshe
    ELECTRONICS, 2024, 13 (08)
  • [10] Real-time detection of pseudo-defect in laser welding of power battery tabs based on photoelectric coaxial sensing
    Zeng, Da
    Wu, Di
    Peng, Biao
    Du, Hui
    Wei, Yutong
    Zhang, Peilei
    Zhan, Xiaohong
    Hanjie Xuebao/Transactions of the China Welding Institution, 2024, 45 (11): : 110 - 114