Disentangling rodent behaviors to improve automated behavior recognition

被引:4
作者
Van Dam, Elsbeth A. A. [1 ,2 ]
Noldus, Lucas P. J. J. [2 ,3 ]
Van Gerven, Marcel A. J. [1 ]
机构
[1] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Dept Artificial Intelligence, Nijmegen, Netherlands
[2] Noldus Informat Technol BV, Wageningen, Netherlands
[3] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Dept Biophys, Nijmegen, Netherlands
关键词
action recognition; deep learning; continuous video analysis; behavior recognition; rodent behavior;
D O I
10.3389/fnins.2023.1198209
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Automated observation and analysis of behavior is important to facilitate progress in many fields of science. Recent developments in deep learning have enabled progress in object detection and tracking, but rodent behavior recognition struggles to exceed 75-80% accuracy for ethologically relevant behaviors. We investigate the main reasons why and distinguish three aspects of behavior dynamics that are difficult to automate. We isolate these aspects in an artificial dataset and reproduce effects with the state-of-the-art behavior recognition models. Having an endless amount of labeled training data with minimal input noise and representative dynamics will enable research to optimize behavior recognition architectures and get closer to human-like recognition performance for behaviors with challenging dynamics.
引用
收藏
页数:12
相关论文
共 28 条
[1]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[2]  
Bentzley B. S., 2020, bioRxiv, DOI DOI 10.1101/2020.04.19.049452
[3]   T-pattern detection and analysis for the discovery of hidden features of behaviour [J].
Casarrubea, M. ;
Magnusson, M. S. ;
Anguera, M. T. ;
Jonsson, G. K. ;
Castaner, M. ;
Santangelo, A. ;
Palacino, M. ;
Aiello, S. ;
Faulisi, F. ;
Raso, G. ;
Puigarnau, S. ;
Camerino, O. ;
Di Giovanni, G. ;
Crescimanno, G. .
JOURNAL OF NEUROSCIENCE METHODS, 2018, 310 :24-32
[4]  
Costacurta J., 2022, ADV NEURAL INFORM PR, P23838
[5]   Q&A: Understanding the composition of behavior [J].
Datta, Sandeep Robert .
BMC BIOLOGY, 2019, 17 (1)
[6]  
Dollar P., 2005, Proceedings. 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (VS-PETS) (IEEE Cat. No. 05EX1178), P65
[7]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[8]   DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning [J].
Graving, Jacob M. ;
Chae, Daniel ;
Naik, Hemal ;
Li, Liang ;
Koger, Benjamin ;
Costelloe, Blair R. ;
Couzin, Iain D. .
ELIFE, 2019, 8
[9]   Measuring Behavior in the Home Cage: Study Design, Applications, Challenges, and Perspectives [J].
Grieco, Fabrizio ;
Bernstein, Briana J. ;
Biemans, Barbara ;
Bikovski, Lior ;
Burnett, C. Joseph ;
Cushman, Jesse D. ;
van Dam, Elsbeth A. ;
Fry, Sydney A. ;
Richmond-Hacham, Bar ;
Homberg, Judith R. ;
Kas, Martien J. H. ;
Kessels, Helmut W. ;
Koopmans, Bastijn ;
Krashes, Michael J. ;
Krishnan, Vaishnav ;
Logan, Sreemathi ;
Loos, Maarten ;
McCann, Katharine E. ;
Parduzi, Qendresa ;
Pick, Chaim G. ;
Prevot, Thomas D. ;
Riedel, Gernot ;
Robinson, Lianne ;
Sadighi, Mina ;
Smit, August B. ;
Sonntag, William ;
Roelofs, Reinko F. ;
Tegelenbosch, Ruud A. J. ;
Noldus, Lucas P. J. J. .
FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2021, 15
[10]  
Gupta S, 2019, bioRxiv, DOI [10.1101/708891, 10.1101/708891, DOI 10.1101/708891V1]