Probing Protein Dynamics in Neuronal Nitric Oxide Synthase by Quantitative Cross-Linking Mass Spectrometry

被引:5
|
作者
Jiang, Ting [1 ]
Wan, Guanghua [1 ]
Zhang, Haikun [1 ]
Gyawali, Yadav Prasad [1 ]
Underbakke, Eric S. [2 ]
Feng, Changjian [1 ]
机构
[1] Univ New Mexico, Coll Pharm, Albuquerque, NM 87131 USA
[2] Iowa State Univ, Roy J Carver Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA
关键词
ELECTRON-TRANSFER; ARCHITECTURE; REVEALS;
D O I
10.1021/acs.biochem.3c00245
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nitric oxide synthase (NOS) is responsible for the biosynthesisof nitric oxide (NO), an important signaling molecule controllingdiverse physiological processes such as neurotransmission and vasodilation.Neuronal NOS (nNOS) is a calmodulin (CaM)-controlled enzyme. In theabsence of CaM, several intrinsic control elements, along with NADP(+) binding, suppress electron transfer across the NOS domains.CaM binding relieves the inhibitory factors to promote the electrontransport required for NO production. The regulatory dynamics of nNOScontrol elements are critical to governing NO signaling, yet mechanisticquestions remain, because the intrinsic dynamics of NOS thwart traditionalstructural biology approaches. Here, we have employed cross-linkingmass spectrometry (XL MS) to probe regulatory dynamics in nNOS, focusingon the CaM-responsive control elements. Quantitative XL MS revealedconformational changes differentiating the nNOS reductase (nNOSred)alone, nNOSred with NADP(+), nNOS-CaM, and nNOS-CaM withNADP(+). We observed distinct effects of CaM vs NADP(+) on cross-linking patterns in nNOSred. CaM induces strikingglobal changes, while the impact of NADP(+) is primarilylocalized to the NADPH-binding subdomain. Moreover, CaM increasesthe abundance of intra-nNOS cross-links that are related to the formationof the inter-CaM-nNOS cross-links. Taken together, these XL MS resultsdemonstrate that CaM and NADP(+) site-specifically alterthe nNOS conformational landscape.
引用
收藏
页码:2232 / 2237
页数:6
相关论文
共 40 条
  • [31] Simplified Protocol for Cross-linking Mass Spectrometry Using the MS-Cleavable Cross-linker DSBU with Efficient Cross-link Identification
    Pan, Dongqing
    Brockrneyer, Andreas
    Mueller, Franziska
    Musacchio, Andrea
    Bange, Tanja
    ANALYTICAL CHEMISTRY, 2018, 90 (18) : 10990 - 10999
  • [32] Traveling-Wave Ion Mobility Mass Spectrometry Analysis of Isomeric Modified Peptides Arising from Chemical Cross-Linking
    Santos, Luiz F. A.
    Iglesias, Amadeu H.
    Pilau, Eduardo J.
    Gomes, Alexandre F.
    Gozzo, Fabio C.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2010, 21 (12) : 2062 - 2069
  • [33] An Optimized Miniaturized Filter-Aided Sample Preparation Method for Sensitive Cross-Linking Mass Spectrometry Analysis of Microscale Samples
    He, Yu
    Li, Yang
    Zhao, Lili
    Ying, Guojin
    Lu, Gang
    Zhang, Lihua
    Zhang, Zhenbin
    ANALYTICAL CHEMISTRY, 2024, 96 (30) : 12341 - 12349
  • [34] Mapping the native interaction surfaces of PREP1 with PBX1 by cross-linking mass-spectrometry and mutagenesis
    Bruckmann, Chiara
    Tamburri, Simone
    De Lorenzi, Valentina
    Doti, Nunzianna
    Monti, Alessandra
    Mathiasen, Lisa
    Cattaneo, Angela
    Ruvo, Menotti
    Bachi, Angela
    Blasi, Francesco
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [35] Characterization of the T4 gp32-ssDNA complex by native, cross-linking, and ultraviolet photodissociation mass spectrometry
    Blevins, Molly S.
    Walker, Jada N.
    Schaub, Jeffrey M.
    Finkelstein, Ilya J.
    Brodbelt, Jennifer S.
    CHEMICAL SCIENCE, 2021, 12 (41) : 13764 - 13776
  • [36] Exploring an Alternative Cysteine-Reactive Chemistry to Enable Proteome-Wide PPI Analysis by Cross-Linking Mass Spectrometry
    Jiao, Fenglong
    Salituro, Leah J.
    Yu, Clinton
    Gutierrez, Craig B.
    Rychnovsky, Scott D.
    Huang, Lan
    ANALYTICAL CHEMISTRY, 2023, 95 (04) : 2532 - 2539
  • [37] Epitope and Paratope Mapping of PD-1/Nivolumab by Mass Spectrometry-Based Hydrogen-Deuterium Exchange, Cross-linking, and Molecular Docking
    Zhang, Mengru Mira
    Huang, Richard Y-C
    Beno, Brett R.
    Deyanova, Ekaterina G.
    Li, Jing
    Chen, Guodong
    Gross, Michael L.
    ANALYTICAL CHEMISTRY, 2020, 92 (13) : 9086 - 9094
  • [38] A kinetic model linking protein conformational motions, interflavin electron transfer and electron flux through a dual-flavin enzyme - simulating the reductase activity of the endothelial and neuronal nitric oxide synthase flavoprotein domains
    Haque, Mohammad M.
    Kenney, Claire
    Tejero, Jesus
    Stuehr, Dennis J.
    FEBS JOURNAL, 2011, 278 (21) : 4055 - 4069
  • [39] Cross-Linking Mass Spectrometry and Mutagenesis Confirm the Functional Importance of Surface Interactions between CYP3A4 and Holo/Apo Cytochrome b5
    Zhao, Chunsheng
    Gao, Qiuxia
    Roberts, Arthur G.
    Shaffer, Scott A.
    Doneanu, Catalin E.
    Xue, Song
    Goodlett, David R.
    Nelson, Sidney D.
    Atkins, William M.
    BIOCHEMISTRY, 2012, 51 (47) : 9488 - 9500
  • [40] Probing arginine-phosphopeptide interactions in non-covalent peptide-peptide ion complexes using gas-phase cross-linking and Born-Oppenheimer molecular dynamics calculations
    Nguyen, Huong T. H.
    Huang, Shu Rong
    Liu, Yang
    Liu, Yue
    Korn, Joseph A.
    Turcek, Frantisek
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2019, 435 : 259 - 271