Nanocoating of lactic acid bacteria: properties, protection mechanisms, and future trends

被引:9
作者
Fan, Qing [1 ,2 ,3 ]
Zeng, Xiaoqun [1 ,2 ,3 ]
Wu, Zhen [1 ,2 ,3 ]
Guo, Yuxing [1 ,4 ]
Du, Qiwei [1 ,2 ,3 ]
Tu, Maolin [1 ,2 ,3 ]
Pan, Daodong [1 ,2 ,3 ]
机构
[1] Ningbo Univ, State Key Lab Managing Biot & Chem Threats Qual &, Ningbo, Peoples R China
[2] Ningbo Univ, Coll Food & Pharmaceut Sci, Key Lab Anim Prot Food Proc Technol Zhejiang Prov, Ningbo, Peoples R China
[3] Ningbo Univ, Zhejiang Malaysia Joint Res Lab Agr Prod Proc & Nu, Ningbo, Zhejiang, Peoples R China
[4] Nanjing Normal Univ, Sch Food Sci & Pharmaceut Engn, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Lactic acid bacteria; nanoencapsulation; microencapsulation; nanocoating; microcapsules; ENHANCED VIABILITY; CELLULOSE NANOFIBER; BIOACTIVE COMPOUNDS; TARGETED DELIVERY; LACTOBACILLUS; MICROENCAPSULATION; ENCAPSULATION; PROBIOTICS; NANO; NANOENCAPSULATION;
D O I
10.1080/10408398.2023.2220803
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Lactic acid bacteria (LAB) is a type of probiotic that may benefit intestinal health. Recent advances in nanoencapsulation provide an effective strategy to protect them from harsh conditions via surface functionalization coating techniques. Herein, the categories and features of applicable encapsulation methods are compared to highlight the significant role of nanoencapsulation. Commonly used food-grade biopolymers (polysaccharides and protein) and nanomaterials (nanocellulose and starch nanoparticles) are summarized along with their characteristics and advances to demonstrate enhanced combination effects in LAB co-encapsulation. Nanocoating for LAB provides an integrity dense or smooth layer attributed to the cross-linking and assembly of the protectant. The synergism of multiple chemical forces allows for the formation of subtle coatings, including electrostatic attractions, hydrophobic interactions, pi-pi, and metallic bonds. Multilayer shells have stable physical transition properties that could increase the space between the probiotic cells and the outer environment, thus delaying the microcapsules burst time in the gut. Probiotic delivery stability can be promoted by enhancing the thickness of the encapsulated layer and nanoparticle binding. Maintenance of benefits and minimization of nanotoxicity are desirable, and green synthesized nanoparticles are emerging. Future trends include optimized formulation, especially using biocompatible materials, protein or plant-based materials, and material modification.
引用
收藏
页码:10148 / 10163
页数:16
相关论文
共 109 条
[1]   Nano-encapsulation of sweet basil essential oil based on native gums and its application in controlling the oxidative stability of Kilka fish oil [J].
Aboutalebzadeh, Sahar ;
Esmaeilzadeh-Kenari, Reza ;
Jafarpour, Ali .
JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 2022, 16 (03) :2386-2399
[2]   Microencapsulation of Lactobacillus rhamnosus ATCC 7469 by spray drying using maltodextrin, whey protein concentrate and trehalose [J].
Agudelo-Chaparro, Jacqueline ;
Ciro-Velasquez, Hector J. ;
Sepulveda-Valencia, Jose U. ;
Perez-Monterroza, Ezequiel Jose .
FOOD SCIENCE AND TECHNOLOGY INTERNATIONAL, 2022, 28 (06) :476-488
[3]   Comparative study on utilization of micro and nano sized starch particles for encapsulation of camel milk derived probiotics (Pediococcus acidolactici) [J].
Ahmad, Mudasir ;
Gani, Adil ;
Hamed, Fathalla ;
Maqsood, Sajid .
LWT-FOOD SCIENCE AND TECHNOLOGY, 2019, 110 :231-238
[4]   Coating of betanin and carvone Co-loaded nanoliposomes with synthesized cationic inulin: A strategy for enhancing the stability and bioavailability [J].
Amjadi, Sajed ;
Almasi, Hadi ;
Hamishehkar, Hamed ;
Khaledabad, Mohammad Alizadeh ;
Lim, Loong-Tak .
FOOD CHEMISTRY, 2022, 373
[5]   Spreadable goat Ricotta cheese added with Lactobacillus acidophilus La-05: Can microencapsulation improve the probiotic survival and the quality parameters? [J].
Andrade Lopes, Laenia Angelica ;
Pimentel, Tatiana Colombo ;
Ferraz Carvalho, Rafaela de Siqueira ;
Madruga, Marta Suely ;
Galvao, Mercia de Sousa ;
Alencar Bezerra, Taliana Kenia ;
Barao, Carlos Eduardo ;
Magnani, Marciane ;
Montenegro Stamford, Thayza Christina .
FOOD CHEMISTRY, 2021, 346
[6]   Microencapsulation of Lactobacillus acidophilus La-05 and incorporation in vegan milks: Physicochemical characteristics and survival during storage, exposure to stress conditions, and simulated gastrointestinal digestion [J].
Andrade Lopes, Laenia Angelica ;
Ferraz Carvalho, Rafaela de Siqueira ;
Santos Magalhaes, Nereide Stela ;
Madruga, Marta Suely ;
Alves Aguiar Athayde, Ana Julia ;
Portela, Isabella Araujo ;
Barao, Carlos Eduardo ;
Pimentel, Tatiana Colombo ;
Magnani, Marciane ;
Montenegro Stamford, Thayza Christina .
FOOD RESEARCH INTERNATIONAL, 2020, 135
[7]   Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus [J].
Ansari, Fereshteh ;
Pourjafar, Hadi ;
Jodat, Vahid ;
Sahebi, Javad ;
Ataei, Amir .
AMB EXPRESS, 2017, 7
[8]   Survival of probiotic bacteria nanoencapsulated within biopolymers in a simulated gastrointestinal model [J].
Atraki, Reza ;
Azizkhani, Maryam .
INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES, 2021, 72
[9]  
Ayomide Emmanuel F., 2022, SUSTAINABILITY, V14, DOI [10.3390/su141710839, DOI 10.3390/SU141710839]
[10]   Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics [J].
Azmi, Nor Azrini Nadiha ;
Elgharbawy, Amal A. M. ;
Motlagh, Shiva Rezaei ;
Samsudin, Nurhusna ;
Salleh, Hamzah Mohd. .
PROCESSES, 2019, 7 (09)